期刊文献+

复杂腔体电磁混沌特性统计分析 被引量:2

Statistical analysis on EM chaos characteristics for complex cavity
下载PDF
导出
摘要 运用量子混沌理论对复杂腔体内电磁混沌统计特性进行研究.针对不同腔体结构下的本征模分布规律问题,采用随机矩阵理论研究了它们的普适性,并结合最小二乘曲线拟合方法,总结了矩形、球形及其布尔组合体(Sinna、Stadium腔体)的混沌统计特性规律.结果显示:矩形、球形等规则腔体的混沌度较低,而两者的布尔组合体混沌度通常大于两者混沌度的线性叠加,且Sinna腔体混沌度大于Stadium腔体,这反映了内凹结构比外凸结构具有更高的混沌特性.为以后复杂腔体的混沌特性研究奠定了理论基础,也为混响室设计、试验提供了理论指导. The quantum chaos theory is employed to analyze the statistical characteristics of chaotic EM field in complex cavity.The eigenmode distribution rule for different structure of cavities is investigated by universality of the random matrix theory,then the statistical chaotic characteristics rule of rectangle,sphere and their Boolean combine cavity(Sinna,Stadium)is proposed by the least squares curve fitting method.The results show that regular cavity suchas the rectangle and sphere belongs to low chaotic degree cavity,but their combinations are more chaotic than their linear adding,and Sinna one is more than Stadium one,which means,the concave cavity is more chaotic than that of convex one.The research ideas,the methods and the results could provide theory references for the chaos characteristics research of complex cavity,similarly for the reverberation chamber designing and testing.
出处 《电波科学学报》 EI CSCD 北大核心 2015年第3期597-602,共6页 Chinese Journal of Radio Science
基金 国家自然科学基金(编号:61201120)
关键词 混沌特性 复杂腔体 统计电磁 混沌度 chaos characteristics complex cavity statistical electromagnetic degree of chaos
  • 相关文献

参考文献13

  • 1庄信武,余志勇,刘光斌,滕向如.基于广义极值的混沌电场峰值分布研究[J].强激光与粒子束,2014,26(7):174-179. 被引量:1
  • 2庄信武,余志勇,刘光斌,滕向如.混沌腔体的统计电磁预测技术[J].强激光与粒子束,2014,26(3):197-203. 被引量:3
  • 3唐亚平,徐大专,朱秋明,任佳敏,鲍军委.复杂城市环境三维高斯波束跟踪预测模型[J].电波科学学报,2014,29(1):86-91. 被引量:1
  • 4谭武端,余志勇,宋建社,邵泽华.混响室的混沌特性及其场统计分布[J].强激光与粒子束,2013,4(4):940-944. 被引量:7
  • 5H.-J. STOCKMANN.Microwave studies of chaotic billiards and disordered systems[J]. Journal of Modern Optics . 2002 (12) 被引量:1
  • 6Orjubin, Gérand,Richalot, Elodie,Picon, Odile,Legrand, Olivier.Chaoticity of a reverberation chamber assessed from the analysis of modal distributions obtained by FEM. IEEE Transactions on Electromagnetic Compatibility . 2007 被引量:1
  • 7Dorr, U.,Stockmann, H.-J.,Barth, M.,Kuhl, U.Scarred and chaotic field distributions in a three-dimensional Sinai-microwave resonator. Physical Review . 1998 被引量:1
  • 8Cozza,Andrea.The role of losses in the definition of the overmoded condition for reverberation chambers and their statistics. IEEE Transactions on Electromagnetic Compatibility . 2011 被引量:1
  • 9Andrea Cozza.Probability Distributions of Local Modal-Density Fluctuations in an Electromagnetic Cavity. IEEE Transactions on Electromagnetic Compatibility . 2012 被引量:1
  • 10Deus,Koch,Sirko.Statistical properties of the eigenfrequency distribution of three-dimensional microwave cavities. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics . 1995 被引量:1

二级参考文献63

  • 1尧德中,阮颖铮.平面波的复射线束展开[J].电子科学学刊,1994,16(1):72-75. 被引量:7
  • 2赵翔,黄卡玛,陈星,闫丽萍.雷电电磁场峰值的概率分布[J].强激光与粒子束,2005,17(2):253-257. 被引量:4
  • 3李超峰,焦培南.三维射线跟踪预测模型在5.8GHz的实验验证[J].电波科学学报,2006,21(6):921-924. 被引量:6
  • 4Hill D A. Plane wave integral representation for fields in reverberation chamber[J]. IEEE Trans on Electromagnetic Compatibility, 1998, 40(3) :209 -217. 被引量:1
  • 5Deus S, Koch P M, Sirko L. Statistical properties of the eigenfrequency distribution of the three-dimensional microwave cavities[J]. Phys Rev E,1995,52(1) :1146-1155. 被引量:1
  • 6StOckmann H J. Quantum chaos:an introduction[M]. Beijing:World Publishing Corporation,2003. 被引量:1
  • 7Orjubin R, Richalot E, Picon O, et al. Chaoticity of a reverberation chamber assessed from the analysis of modal distributions obtained by FEM[J]. IEEE Trans on Electromagnetic Compatibility ,2007,49(4) :762 -771. 被引量:1
  • 8Arnaut L R. Operation of electromagnetic reverberation chambers with wave diffractors at relatively low frequencies[J]. IEEE Trans on Electromagnetic Compatibility, 2001,43(4) :637 -653. 被引量:1
  • 9Zheng X, Antonsen Jr T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electomagnetics, 2006,26 : 3-35. 被引量:1
  • 10Lehman T H. A statistical theory of electromagnetic fields in complex cavities[G]. Interaction Notes 494,1993. 被引量:1

共引文献7

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部