期刊文献+

分析一维光子晶体的传输矩阵法与光学薄膜的菲涅耳系数矩阵法的等效性 被引量:3

On the Equivalence of the Transfer Matrix Method for Investigating one dimensional Photonic Crystal with the Fresnel Coefficient Matrix Method for Analyzing Optical Thin film
下载PDF
导出
摘要 一维光子晶体与光学薄膜的结构都具有分层性,为了得它们分析方法的异同,本文比较分析了一维光子晶体能带结构的传输矩阵法与计算光学薄膜分光特性的菲涅耳系数矩阵法,结果发现两种方法在计算一维光子晶体与光学薄膜的反射率与透射率上是等效的,用菲涅耳系数矩阵法计算一维光子晶体的反射率R与入射光波长的变化规律的实例也表明这一点,这两种方法在公式表述中的差别在于位相改变量δ的符号的正负,但不影响计算结果。 To distinguish the similarities and differences of the methods using to analyze one dimensional pho-tonic crystal(PC) and optical thin films(TF) which are provided with the similar stratified structure, the transfer ma-trix method(TMM) for analyzing the band gap of PC and the Fresnel coefficient matrix method(FCMM) for discuss-ing transmission and refection of TF were compared, and the equivalence of these two method for investigating the reflectivity and transmissivity of light of PC and TF was declared through the theory and a example of calculation of PC’s reflectance using FCMM, although existence of plus-minus of sign of variation for phase in the design formula for these two methods.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第7期26-29,共4页 Laser Journal
关键词 光子晶体 传输矩阵法 光学薄膜 菲涅耳系数矩阵法 Photonic Crystals Transfer Matrix Method Optical Thin films Fresnel Coefficient Matrix Method
  • 相关文献

参考文献26

  • 1Yablonvitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett, 1987, 58 (20): 2059-2061. 被引量:1
  • 2John S. Strong localization of photons in certain disordered dielectric super-lattices[J]. Phys. Rev. Lett, 1987, 58 (23): 2486-2489. 被引量:1
  • 3Macleod H A. Thin-Film Optical Filters(4th edition)[M]. New York: CRC Press, 2010. 被引量:1
  • 4唐晋发等著..现代光学薄膜技术[M].杭州:浙江大学出版社,2006:492.
  • 5卢进军,刘卫国编著..光学薄膜技术[M].西安:西北工业大学出版社,2005:194.
  • 6M.Bom, E.Wolf Principle of Optics(7^th Edition) [M]. London: Cambridge University Press 1999. 被引量:1
  • 7林永昌,卢维强编著..光学薄膜原理[M].北京:国防工业出版社,1990:366.
  • 8盖红星,陈建新,俞波,廉鹏,邓军,李建军,韩军,沈光地.垂直腔面发射激光器菲涅耳系数矩阵法设计[J].光电工程,2006,33(7):44-47. 被引量:1
  • 9Pendry. J B, Mackinnon A. Calculation of photon dispersion relations. Phys Rev. Lett. 1992, 69(19): 2772-2775. 被引量:1
  • 10Sigalas. M M, Soukoulis. C M, Economou. E Net al. Pho- tonic band gaps and defects in two dimensions: Studies of the transmission coefficient [J] . Phys Rev B. 1993 , 48 (19): 14121-14126. 被引量:1

二级参考文献88

共引文献151

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部