期刊文献+

基于改进PSO的Lucas-Kanade的参数选取

PARAMETERS SELECTION FOR LUCAS-KANADE USING IMPROVED PSO
下载PDF
导出
摘要 利用Lucas-Kanade光流法进行目标跟踪时,目标本身存在旋转、位移、缩放等情况,影响跟踪的准确性。因此提出一种新的算法。该算法先使用改进的PSO估算出一组参数,然后把更新出的参数送回到光流法,再进行一次更新,有效地计算出更合适的参数。实验结果表明,该算法能快速有效的对目标进行跟踪。 When tracking the target using Lucas-Kanade method for optical flow estimation, there are the impacts on the tracking accuracy caused by the target rotation, translation and scaling. Therefore, we propose a new algorithm. The algorithm first uses the improved PSO to estimate a set of parameters, then it sends back the parameters formed from updating to optical flow method and updates once again for the effective calculation of the more appropriate parameters. Simulation results show that this algorithm can rapidly and effectively track the moving objects.
作者 李蓉 周维柏
机构地区 广州商学院
出处 《计算机应用与软件》 CSCD 北大核心 2014年第7期217-220,共4页 Computer Applications and Software
基金 广东省自然科学基金项目(S2011010003442)
关键词 Lucas-Kanade 粒子群优化算法 目标跟踪 模板漂移 Lucas-Kanade Particle swarm optimisation Target tracking Template drift
  • 相关文献

参考文献3

二级参考文献31

  • 1邵文坤,黄爱民,韦庆.目标跟踪方法综述[J].影像技术,2006,18(1):17-20. 被引量:24
  • 2KENNEDY J, EBERHART R. Particle Swarm Optimization [C]//IEEE Int Conf on Neural Networks Perth, 1995: 1 942-1 948. 被引量:1
  • 3ANGELINE P J. Evolutionary optimization versus particle swarm optimization:philoso phy and Performance differences[J]. Evolutionary Programming, 1998,256-260. 被引量:1
  • 4SHI Y, EBEMART R C. A modified particle swam optimizer[ C ]//Proceedings of 1998 IEEE International Conference on Evolutionary Computation. NY, USA : IEEE, 1998:69-73. 被引量:1
  • 5EBEMART R C, SHI Y. Particle swam optinizer developments applications and r esources[ C]//Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, NJ USA : IEEE,2001 : 81-86. 被引量:1
  • 6SHI Y, EBEMART R C. A. Fuzzy adaptive particle sam optimization[ C ]//Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, NJ USA : IEEE, 2001 : 101-106. 被引量:1
  • 7Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agents [ J ]. IEEE Transactions on System, Man, and Cybernetics : Part B, 1996,26(1 ) :29 - 41. 被引量:1
  • 8Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of International Conference on Neural Networks in 1995. New York: IEEE Press, 1995:1942- 1948. 被引量:1
  • 9Gaing Z L. Particle swarm optimization to solving the economic dispatch considering the generator constraints [J ].IEEE Transactions on Power System, 2003,18(3) : 1187 - 1195. 被引量:1
  • 10Fan S, Zahara E. A hybrid simplex search and particle swarm optimization for unconstrained optimization [ J ]. European Journal of Operational Research, 2007,181 (2) : 527- 548. 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部