期刊文献+

连续谱数据的函数型主成分回归 被引量:2

Functional principal component regression for continuous spectra data
下载PDF
导出
摘要 对连续谱数据不做离散化处理,而是将光滑后的连续谱作为连续曲线,进行函数型主成分回归分析,以期获得既可降维又能减少信息损失的回归方程.在此建模过程中,还引入连续谱的导数曲线作为协变量,并给出函数型主成分回归系数的bootstrap置信区间.作为实证研究,对玻璃样品的X射线谱和样品中硅元素含量进行回归分析.研究结果表明,基于函数型主成分的回归分析对响应变量具有较强解释能力,同时其回归系数更加符合数据本身的特点,显示出新方法所具有的优越性与实用价值. The method treating the smooth spectra as functional data was proposed and regression analysis was carried out based on functional principal components of spectra curves to obtain regression models without discretization. In modeling,the derivative curves of spectra can be introduced and bootstrap confidence intervals for functional coefficients were obtained. Using this method,the regression relationship between element concentration and X-ray spectra of glass samples was analyzed. It is shown that the functional regression based on principal components is more acceptable and has many advantages,because it complies with the characteristics of the data itself while attaining strong explanatory ability.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第6期792-796,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(71031001 20903013) 北京航空航天大学博士研究生创新基金资助项目(YWF-14-YJSY-027)
关键词 连续谱 函数型数据 主成分 导数曲线 BOOTSTRAP continuous spectra functional data principal component derivative curve bootstrap
  • 相关文献

参考文献12

  • 1Tarachiwin L, Ute K,Kobayashi A,et al.1H NMR based metabolic profiling in the evaluation of Japanese green tea quality[J].Journal of Agricultural and Food Chemistry.2007,55(23):9330-9336. 被引量:1
  • 2Ohno A, Oka K,Sakuma C,et al.Characterization of tea cultivated at four different altitudes using 1H NMR analysis coupled with multivariate statistics[J].Journal of Agricultural and Food Chemistry.2011,59(10):5181-5187. 被引量:1
  • 3Filzmoser P, Serneels S,Croux C,et al.Robust multivariate methods:the projection pursuit approach[M].New York:Springer,2006:270-277. 被引量:1
  • 4Serneels S, Croux C,Filzmoser P,et al.Partial robust M-regression[J].Chemometrics and Intelligent Laboratory Systems.2005,79(1):55-64. 被引量:1
  • 5Lee J E, Lee B J,Chung J O,et al.Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites:a(1)H NMR-based metabolomics study[J].Journal of Agricultural and Food Chemistry.2010,58(19):10582-10589. 被引量:1
  • 6Ramsay J O, Silverman B W.Functional data analysis[M].New York:Springer,1997. 被引量:1
  • 7Cai T T, Hall P.Prediction in functional linear regression[J].Annals of Statistics.2006,34(5):2159-2179. 被引量:1
  • 8James G M, Hastie T J,Sugar C A.Principal component models for sparse functional data[J].Biometrika.2000,87(3):587-602. 被引量:1
  • 9Cardot H, Crambes C,Sarda P.Quantile regression when the covariates are functions[J].Journal of Nonparametric Statistics.2005,17(7):841-856. 被引量:1
  • 10Hall P, Horowitz J L.Methodology and convergence rates for functional linear regression[J].The Annals of Statistics.2007,35(1):70-91. 被引量:1

同被引文献21

  • 1严明义.经济数据分析:一种基于数据的函数性视角的分析方法[J].当代经济科学,2007,29(1):108-113. 被引量:15
  • 2Ramsay J O.Functional data analysis[M].John Wiley Sons,Inc,2005. 被引量:1
  • 3Yao F,Miiller H,Wang J.Functional data analysis for sparse longitudinal data[J].J Am Statist Assoc,2005,100(470):577-590. 被引量:1
  • 4Minh H Q,Niyogi P,Yao Y.Computational Learning Theory[M].Springer Berlin Heidelberg,2006:154-168. 被引量:1
  • 5Simon N,Friedman J,Hastie T,Tibshirani R.A sparse-Group Lasso[J].Journal of Computational and Graphical Statistics,2013,22(2):231-245. 被引量:1
  • 6Fan J,Li R.Variable selection via nonconcave penalized likelihood and its oracle properties[J].Journal of the American Statistical Association,2001,96(456):1348-1360. 被引量:1
  • 7Wang H,Li B,Leng C.Shrinkage tuning parameter selection with a diverging number of parameters[J].Journal of the Royal Statistical Society:Series B(Statistical Methodology),2009,71(3):671-683. 被引量:1
  • 8Friedman J,Hastie T,Hofling H,et al.Pathwise coordinate optimization[J].The Annals of Applied Statistics,2007,1(2):302-332. 被引量:1
  • 9Wu T T,Lange K.Coordinate descent algorithms for lasso penalized regression[J].The Annals of Applied Statistics,2008,2(1):224-244. 被引量:1
  • 10Yuan M,Lin Y.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statistical Society:Series B(Statistical Methodology),2006,68(1):49-67. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部