期刊文献+

基于K-means算法的行人检测方法研究 被引量:2

Research on Pedestrian Detection Method Based on K-means Algorithm
原文传递
导出
摘要 行人作为交通事故易受伤群体之一,其安全保障越发受到重视。结合车载激光测距仪实时采集的车辆前方障碍物距离信息,提出基于K-means算法的行人检测方法。首先对激光测距仪接收的距离信息进行报文解析,形成激光云点图。其次,对激光云点图进行预处理,消除冗余数据。再应用K-means聚类算法对前方障碍物进行分类,最后建立行人宽度模型甄别行人目标。试验结果表明,基于K-means聚类算法能从激光云点图中快速提取行人目标,为汽车主动安全及交通安全研究提供基础。 Pedestrians are one of the most vulnerable groups in road accidents, much more attention have been paid to the quarantee of pedestrain safety. Combining with range information of obstacles in front of a vehicle real-time acquired from on-board laser range finder, a pedestrian detection algorithm based on K- means is presented. First, the range data from laser range finder is parsed and laser point cloud diagrams are constructed. Then, the laser point cloud diagrams are preprocessed to reduce the redundant data. And the K- means clustering algorithm is utilized to classify various obstacles in front of a vehicle. Finally, the pedestrian width model is established to identify the target. The experimental result shows that the clustering algorithm based on K-means can extract pedestrians from laser point cloud diagrams, which can lay a foundation for the research of automotive active safety and traffic safety.
出处 《公路交通科技》 CAS CSCD 北大核心 2014年第7期143-147,共5页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金项目(51108192 51208500) 中国博士后科学基金项目(2012M521824 2013T60904) 华南理工大学中央高校基本科研业务费专项资金项目(2012ZZ0100 2014ZG0029) 华南理工大学"学生研究计划"SRP(4564)
关键词 智能交通 行人检测 激光云点 K-MEANS算法 主动安全 ITS pedestrian detection laser point cloud K-means algorithm active safety
  • 相关文献

参考文献18

  • 1袁泉,李一兵,郭榕.用于统计与分析的汽车碰撞行人事故深入数据源[J].公路交通科技,2008,25(5):126-129. 被引量:6
  • 2GARCIA F, DE LA ESCALERA A, ARMINGOL J M.Context Aided Multilevel Pedestrian Detection [ C ] // 2013 16th International Conference on Information Fusion (FUSION). Istanbul, Turkey: IEEE, 2013: 2019- 2024. 被引量:1
  • 3KIM D S, LEE K H. Segment-based Region of Interest Generation for Pedestrian Detection in Far-infrared Images [ Jl. Infrared Physics and Technology, 2013, 61 (13) : 120 - 128. 被引量:1
  • 4GARCIA F, MUSLEH B, DE LA ESCALERA A, et al. Fusion Procedure for Pedestrian Detection based on Laser Scanner and Computer Vision [ C ] // 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, D. C: IEEE, 2011: 1325 - 1330. 被引量:1
  • 5LUDWIG O, PREMEBIDA C, NUNES U, et al. Evaluation of Boosting-SVM and SRM-SVM Cascade Classifiers in Laser and Vision-based Pedestrian Detection [C] // 2011 14th International IEEE Conference on Intelligent Transportation Systems ( ITSC ). Washington, D. C. : IEEE, 2011: 1574- 1579. 被引量:1
  • 6HILADO S D F, DADIOS E P, GAN LIM L A, et al. Vision Based Pedestrian Detection Using Histogram of Oriented Gradients, Adaboost Linear Support Vector Machines [ C ] // 10th Annual International Conference on TENCON. Cebu, Philippines: IEEE, 2012: 474- 480. 被引量:1
  • 7张阳,刘伟铭,吴义虎.面向车载辅助驾驶系统的快速行人检测方法[J].公路交通科技,2013,30(11):131-138. 被引量:4
  • 8BREHAR R, NEDEVSCHI S. Local Information Statistics of LBP and HOG for Pedestrian Detection [ C ] //2013 IEEE International Conference on Intelligent Computer Communication and Processing ( ICCP ). Cluj-Napoca, Romania: IEEE, 2013 : 117 - 122. 被引量:1
  • 9刘金广,于泉,荣建,刘小明,张银平.基于视频的信号交叉口行人自行车交通特性[J].公路交通科技,2009(S1):53-57. 被引量:2
  • 10TETIK Y E, BOLAT B. Pedestrian Detection with an Improved Adaboost [ C ] // 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications. Albena, Bulgaria : IEEE, 2013 : 37 - 42. 被引量:1

二级参考文献47

共引文献26

同被引文献23

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部