期刊文献+

具有适应值预测机制的遗传算法 被引量:3

Genetic algorithm with fitness approximate mechanism
下载PDF
导出
摘要 针对适应值计算费时的优化问题,提出一种具有适应值预测机制的遗传算法:为了有效控制预测适应值的准确度和预测频率,建立了一个基于可信度概念的适应值预测模型,引入可信度流失机制以减少预测误差的传播和累积,引入冗余个体剔除机制以减少计算消耗。利用3个基准函数对算法进行收敛性和有效性的测试,测试结果表明算法对于3个测试函数均能获得满意的最优解,并且都能减少60%以上的真实适应值计算次数。 The evaluation of the fitness is computationally very expensive for some optimization problems;therefore a genetic algorithm named FAGA with fitness approximate mechanisms is introduced.In order to effectively control the accuracy and frequency of the fitness approximation,a fitness approximate model based on the concept of fidelity was established.The fitness of a particular individual in the population was obtained as weighted averages of other individuals within a certain area,the size of the area was limited by the fitness sharing radius,the weights of different individuals were determined by the non-dimensional Euclidean distances between individuals and the particular one,and whether to use the real fitness functions or not was decided by the fidelity thresholds.Besides,mechanisms of the loss of fidelity was adopted to reduce the approximate errors from spread and accumulation,and mechanisms of removing redundancy individuals in order to reduce the computing consumption was used at the same time.Three benchmark functions were used to test the convergence and effectiveness of FAGA.The test results show that FAGA achieves satisfactory the optimal solution among the three test functions,and more than 60% of the computation can be reduced at the same time.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2014年第3期116-121,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(51075328)
关键词 适应值预测 遗传算法 共享半径 可信度 预测频率 fitness approximate genetic algorithm sharing radius fidelity approximate frequency
  • 相关文献

参考文献12

  • 1孙超利著..面向机械系统优化设计的微粒群算法[M].北京:机械工业出版社,2012:187.
  • 2Sban S Q, Wang G G. Survey of modeling and optimization strategies to solve high-dimensional problems with computationally-expensive black-box functions [ J ]. Structual and Multidisciplinary Optimization, 2010, 41 ( 2 ) : 219 - 241. 被引量:1
  • 3Jin Y C. A comprehensive survey of fitness approximation in evolution computation[ J]. Soft Computing, 2005, 9( 1 ) : 3 - 12. 被引量:1
  • 4Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization [ J ]. Journal of Mechanical Design, 2006, 129 (4) : 370 - 380. 被引量:1
  • 5王小平,曹立明著..遗传算法 理论、应用与软件实现[M].西安:西安交通大学出版社,2002:344.
  • 6Paenke I, Branke J, Jin Y C. Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation [ J ]. IEEE Transaction on Evolutionary Computation, 2006, 10(4) : 405 -420. 被引量:1
  • 7Li M. An improved kriging-assisted multi-objective genetic algorithm[ J]. Journal of Mechanical Design, 2011, 133 ( 7 ) : 1 -11. 被引量:1
  • 8Jin Y C, Olhofer M, Sendhoff B. A framework for evolutionary optimization with approximate fitness functions [ J ]. IEEE Transactions on Evolutionary Computation, 2002, 6 (5) : 481 - 494. 被引量:1
  • 9Malak R J, Predis C J J. Using support vector machines to formalize the valid input domain of predictive models in systems design problems[ J]. Journal of Mechanieal Design, 2010, 132 (10): 1-14. 被引量:1
  • 10Smith R E, Dike B A, Stegmann S A. Fitness inheritance in genetic algorithm[C]// Proceedings of the 1995 ACM Symposium on Applied Computing, 1995:345 -350. 被引量:1

同被引文献47

  • 1罗宏浩,吴峻,常文森.新型电磁弹射器的动态性能仿真[J].系统仿真学报,2006,18(8):2285-2288. 被引量:36
  • 2方宗德.修形斜齿轮的轮齿接触分析[J].航空动力学报,1997,12(3):247-250. 被引量:40
  • 3Sivakumar P, Gopinath K, Sundaresh S. Performance evaluation of high-contact-ratio gearing for combat tracked vehicles-a case study [ J ]. Proceedings of the Institution of Mechanical Engineers, 2010,224:631 -643. 被引量:1
  • 4Pan Wusan. Optimal design of compact high contact ratio gears[ D]. The University of Memphis, 2006. 被引量:1
  • 5Reagor C P. An optimal gear design method for minimization of transmission error and vibration excitation [ D ]. The Pennsylvania State University, 2010. 被引量:1
  • 6齿轮手册(上册)[M].机械工业出版社,2001,(2):5-7. 被引量:1
  • 7Litvin F L, Kin V. Computerized simulation of meshing and bearing contact for single-enveloping worm-gear drives [ J ]. ASME Journal of Mechanical Design, 1992, 114(2): 313 -316. 被引量:1
  • 8Livtin F L. Gear geometry and applied theory [ M ]. FIR Prentice Hall, Engleweod, 1994. 被引量:1
  • 9Goldberg D E, Richardson J. Genetic algorithm with sharing of multimodal function optimization [ C ]//Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum, 1987:41 - 49. 被引量:1
  • 10Zhijin Zhao, Zhen Peng, Shilian Zheng, et al. Cognitive radio spectrum allocation using evolutionary algorithms[J]. IEEE Transactions on Wireless Communications,2009,8(9):4421-4425. 被引量:1

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部