期刊文献+

扰动微分方程近似对称分类

Approximate Symmetry Classifications of Perturbed Differential Equations
下载PDF
导出
摘要 确定扰动微分方程近似对称分类时主要采用近似Lie算法.分类方程的获取及确定方程组的求解是对称分类问题的关键所在.文中利用近似Lie算法、等价变换技巧给出了扰动KP方程的近似对称分类及扰动Hopf方程的近似势对称分类. Approximate Lie's algorithm is mainly used to analyze the symmetry classification of perturbed differential equations with arbitrary parameters.The key point to determine the symmetry classification is to find out classification equations and to solve determining equations.Approximate symmetry classifications of generalized perturbed KP equation and perturbed Hopf equation are performed by using approximate Lie's algorithm method and the technique of equivalence transformations.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期337-341,共5页 Journal of Inner Mongolia University:Natural Science Edition
基金 内蒙古自然科学基金资助项目(No.2011BS0106)
关键词 扰动微分方程 近似对称 对称分类 perturbed differential equation approximate symmetry symmetry classification
  • 相关文献

参考文献13

  • 1Olver P J. Application of Lie groups to differential equations [M]. New York : Springer-Verlag, 1993. 被引量:1
  • 2Ibragimov N H. Elementary Lie Group Analysis and Ordinary Differential Equations [M]. Chichester: Wiley, 1999. 被引量:1
  • 3Baikov V A,Gazizov R K,Ibragimov N H. Approximate symmetries[J]. J Mat sb, 1988,136:435-450 (English translation in J Math USSR Sb,1989,64:427-441). 被引量:1
  • 4Baikov V A,Gazizov R K,Ibragimov N H. Perturbation methods in group analysis[J]. Journal of Mathematical Sciences, 1991,55 : 1450-1490. 被引量:1
  • 5Euler N. Shulga M W,Steeb W H. Approximate symmetries and approximate solutions for a multidimensional Landau-Ginzburg equation[J]. Phys A :Math Gen, 1992,25 : 1095-1103. 被引量:1
  • 6Ovsiannikov L V. Group analysis of differential equations [M]. New York: Academic Press, 1982. 被引量:1
  • 7Ibragimov N H. CRC Handbook of Lie Group Analysis of Differential Equations Volume2[M]. Boca Raton FL: CRC Press, 1995. 被引量:1
  • 8Ibragimov N H. CRC Handbook of Lie Group Analysis of Differential Equations Volumel [M]. Boca Raton FL : CRC Press, 1994. 被引量:1
  • 9Bluman G W, Kumei S. Symmetries and differential Equations [M]. New York:Springer, 1989. 被引量:1
  • 10Ibragimov N H. CRC Handbook of Lie Group Analysis of Differential Equations Volume3[M]. Boca Raton FL : CRC Press, 1996. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部