期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
关于扰动微分方程零解稳定性的若干定理
被引量:
13
下载PDF
职称材料
导出
摘要
本文根据第二方法,推广了命题。对未被扰动运动的局部稳定性、全局渐近稳定性以及全局一致渐近稳定性的情形作了讨论,得到了更强的结果。
作者
么秉春
机构地区
河北建筑工程学院
出处
《数学年刊(A辑)》
CSCD
北大核心
1990年第5期553-558,共6页
Chinese Annals of Mathematics
关键词
扰动微分方程
零解
稳定性
分类号
O175.13 [理学—数学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
6
共引文献
0
同被引文献
29
引证文献
13
二级引证文献
17
参考文献
6
1
俞伯华,杭州大学学报,1979年,1/2期
被引量:1
2
金维言,数学学报,1965年,15卷,2期
被引量:1
3
梁永富,四川大学学报,1964年,3期
被引量:1
4
许淞庆,1962年
被引量:1
5
周雪鸥,四川大学学报,1960年,2期
被引量:1
6
匿名著者,运动的稳定性,1959年
被引量:1
同被引文献
29
1
徐道义,颜祥伟.
关于部分变元渐近稳定性的几个基本定理[J]
.四川师范大学学报(自然科学版),1996,19(2):4-9.
被引量:6
2
孙继涛.关于扰动微分方程零解的稳定性,常微分方程理论及其应用[M].北京:科学出版社,1992.129-131.
被引量:2
3
孙继涛.常微分方程理论及其应用[M].北京:科学出版社,.129-130.
被引量:1
4
李岳生.非线性微分方程解的有界性.稳定性和误差估计[J].数学学报,1962,12:32-39.
被引量:1
5
孙继涛.关于扰动微分方程零解的稳定性[J]..常微分方程理论及其应用[C].科学出版社,1992 (1).129-130.
被引量:1
6
金维言.关于李雅普诺夫方法的若干定理.数学学报,1965,15(2):206-216.
被引量:2
7
李岳生.非线性微分方程解的有界性[J].稳定性和误差估计,数学学报,1962,(12):32-39.
被引量:1
8
孙继涛.关于扰动微分方程零解的稳定性:常微分方程理论及其应用[M].北京:科学出版社,1992.129-130.
被引量:1
9
俞伯华.关于李雅普诺夫渐进稳定性的若干定理.杭州大学学报,1979,(1):59-71.
被引量:1
10
[3]Yoshizawa T.Stability theory by Liapanov's second method the math[J].Soc.Japan.1966,9(6):55~63.
被引量:1
引证文献
13
1
程舰.
带扰动项微分方程零解稳定性定理的推广[J]
.湖北师范学院学报(自然科学版),2004,24(3):13-16.
2
湛少锋.
关于扰动微分方程零解稳定性若干定理的改进[J]
.数学杂志,2005,25(4):445-448.
3
严雯,韩进城.
扰动运动微分方程零解稳定性定理的改进[J]
.宜宾学院学报,2009,9(6):13-15.
4
孟立平.
微分方程的零解稳定性在控制理论中的应用[J]
.佳木斯大学学报(自然科学版),2010,28(1):123-125.
5
王彧.
微分方程组的零解稳定性[J]
.景德镇高专学报,2010,25(4):18-19.
6
郭洪霞.
关于扰动差分方程零解的稳定性[J]
.工程数学学报,2002,19(1):75-79.
7
徐润,任安忠.
差分方程组稳定性理论若干定理的推广[J]
.河南师范大学学报(自然科学版),2002,30(3):15-17.
8
郭怡萍.
关于部分变元稳定性的新判据[J]
.潍坊学院学报,2014,14(2):100-102.
9
吴春林,杨洋,翟峰羽,赵墨非.
基于演化博弈的生产作业现场工人安全纽带缔结的驱动机制研究[J]
.运筹与管理,2023,32(9):64-71.
被引量:1
10
徐润.
差分方程组稳定性定理的推广[J]
.安徽师范大学学报(自然科学版),2002,25(4):315-317.
二级引证文献
17
1
王瑞莲.
关于微分方程稳定性理论若干定理的推广[J]
.内蒙古财经学院学报(综合版),2010,8(5):143-145.
被引量:1
2
高莲,包曙红.
关于Lyapunov稳定性若干定理的推广[J]
.内蒙古师范大学学报(自然科学汉文版),2006,35(4):407-412.
被引量:7
3
胡芬.
关于零解稳定和一致稳定的几个判定定理[J]
.通化师范学院学报,2008,29(4):15-17.
被引量:1
4
胡雅光,蹇继贵.
非线性非自治系统零解的稳定性[J]
.三峡大学学报(自然科学版),2008,30(5):100-103.
5
赵玉中,郭继峰.
Liapunov稳定性若干定理的推广[J]
.淮北煤炭师范学院学报(自然科学版),2008,29(4):20-22.
6
张荣荣,秦宏立,薛巧梅.
对n维非自治微分方程稳定性若干定理的推广[J]
.西南民族大学学报(自然科学版),2009,35(1):63-66.
7
朱美玉,尤晓琳.
李雅普诺夫稳定性理论应用研究[J]
.河南师范大学学报(自然科学版),2009,37(4):148-149.
被引量:6
8
孟立平.
微分方程的零解稳定性在控制理论中的应用[J]
.佳木斯大学学报(自然科学版),2010,28(1):123-125.
9
王瑞莲.
关于微分方程零解稳定性定理的推广[J]
.内蒙古科技与经济,2010(19):60-60.
10
付华,秦宏立,周居政.
n维非线性系统稳定性若干定理的推广[J]
.延安大学学报(自然科学版),2011,30(4):6-8.
1
程舰.
带扰动项微分方程零解稳定性定理的推广[J]
.湖北师范学院学报(自然科学版),2004,24(3):13-16.
2
商立军.
关于扰动微分方程组零解部分变元的稳定性[J]
.纯粹数学与应用数学,1994,10(1):98-100.
3
湛少锋.
关于扰动微分方程零解稳定性若干定理的改进[J]
.数学杂志,2005,25(4):445-448.
4
王丽敏.
扰动微分方程在优化约束问题中的应用[J]
.大连铁道学院学报,2001,22(3):5-7.
5
吴洪武,刘鸿基.
二阶非线性扰动微分方程的振动准则[J]
.黑龙江大学自然科学学报,2006,23(4):434-436.
6
杜世田.
关于稳定性定理的一种证明[J]
.山东大学学报(工学版),2002,32(2):109-110.
7
韦金生,徐维亮.
非线性扰动微分方程解的估计[J]
.安徽工业大学学报(自然科学版),2002,19(1):65-68.
8
常青,周立群.
一类具时滞细胞神经网络的全局一致渐近稳定性[J]
.山东大学学报(理学版),2012,47(8):42-49.
被引量:6
9
查良松.
一类带有时滞的神经网络一致稳定性判别法[J]
.绍兴文理学院学报(自然科学版),2005,25(7):17-21.
10
严雯,韩进城.
扰动运动微分方程零解稳定性定理的改进[J]
.宜宾学院学报,2009,9(6):13-15.
数学年刊(A辑)
1990年 第5期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部