期刊文献+

高分辨力PCB裸板图像轮廓快速圆弧探测 被引量:6

A Fast Arc Detection Algorithm for High-Resolution PCB Bare Board Image Contours
下载PDF
导出
摘要 当前主流的在线高精度PCB裸板缺陷AOI检测系统均采用基于轮廓矢量化分析比对方法,圆弧探测是实现轮廓矢量化的关键环节。本文提出一种快速的圆弧探测方法,首先采用DP(Douglas-Peucker)算法对轮廓进行曲线抽稀处理,将轮廓分割为直线段基元并计算法向角,然后依次计算各相邻直线段基元的法向角偏差之和,并与基元中点位置值一起形成法向角变换曲线,再次采用DP算法检测变换曲线中的直线段即可完成圆弧探测。本文将圆弧探测简化为两次直线探测,算法复杂度为O(n),具有非常高的计算效率。实验结果表明,本文方法与Halcon商业软件中的圆弧检测算法相比,准确率更高且耗时更少。 The most popular online high-precision Automatic Optical Inspection (AOI) detection system for PCB bare board adopts the inspection method based on contour vectorization and comparison, and arc detection is the key of realizing the contour vectorization. A new fast arc detection method is proposed. Firstly, segmentation primitives are obtained from contours by Douglas-Peucker polyline simplification algorithm and their normal angles are calculated. Then, the sum of difference between normal angles of each two adjacent primitives is calculated, which is used to build the normal angle transformation curve with the position of mid-point of primitive. Finally, DP algorithm is used again to detect the line segments in normal angle transformation curve to implement arc detection. The proposed algorithm simplifies the arc detection into two times line segment detection, and the complexity is O(n). Experimental results show that the proposed algorithm owns higher accuracy and lower cost time in comparison with the same module of Halcon software.
出处 《光电工程》 CAS CSCD 北大核心 2014年第7期88-94,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61271420) 广东省自然科学基金资助项目(S2011040000662) 深圳市科技计划资助项目(JC201105190829A JC201006020811A)
关键词 圆弧探测 PCB裸板图像 法向角变换曲线 道格拉斯-普克 arc detection PCB bare board image normal angle transformation curve Douglas-Peucker
  • 相关文献

参考文献15

  • 1胡涛..基于轮廓对比的PCB裸板缺陷检测算法研究[D].华中科技大学,2009:
  • 2IOANNOUA D, HUDAB W, LAINE A F. Circle Recognition through a 2D Hough Transform and Radius Histogramming [J]. Image and Vision Computing(S0262-8856), 1999, 17(1): 15-26. 被引量:1
  • 3CHIU Shih-Hsuan, LIAW Jiunjian. An Effective Voting Method for Circle Detection [J]. Pattern Recognition Letters(S0167-8655), 2005, 26(2): 121-133. 被引量:1
  • 4SHEU Hsin-Teng, HU Wu-Chih. Multiprimitive Segmentation of Planar Curves-A Two-Level Breakpoint Classification and Tuning Approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1999, 21(8): 791-797. 被引量:1
  • 5Coeurjolly D, Miguet S, Tougne L. Discrete Curvature Based on Osculating Circle Estimation [C]// 4th International Workshop onVisualForm, Capri, Italy, May28-30, 2001, 2059: 303-312. 被引量:1
  • 6ROSIN P L, WEST G A W. Nonparametric Segmentation of Curves into Various Representations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1995, 17(12): 1140-1153. 被引量:1
  • 7KANATANI K. Comments on "Nonparametric Segmentation of Curves into Various Representations" [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1997, 19(12): 1391-1394. 被引量:1
  • 8RoussiUonT, TougneL, Sivigon I.On Three Constrained Versions of the Digital Circular Arc Recognition Problem[C]//15th IAPlt International Conference, Discrete Geometry for Computer Imagery, Montreal, Canada, Sept 30-Oct 2, 2009, 5810: 34-45. 被引量:1
  • 9PAL S, BHOWMICK R Determining Digital Circularity Using Integer Intervals [J]. Journal of Mathematical Imaging and Vision(S0924-9907), 2012, 42(1): 1-24. 被引量:1
  • 10Lamiroy B, Guebbas Y. Robust and Precise CircuLar Arc Detection [C]//8th International Workshop, GREC 2009, La Rochelle, France, July22-23, 2009, 6020: 49-60. 被引量:1

二级参考文献10

  • 1Douglas D H, Peucker T K. Algorithms for the Reductionof the Number of Points Required to Represent a Digitized Line or its Caricature [J]. Cartographica(S0317-7173), 1973, 10(2): 112-122. 被引量:1
  • 2Tak-chung F. A Review on Time Series Data Mining [J]. Engineering Applications of Artificial Intelligence(S0952-1976), 2011, 24(1): 164-181. 被引量:1
  • 3闫焱, 史文欢, 刘允才. 复杂背景下的棋盘格角点检测方法: 中国, 101477687A [P]. 2009.7. 被引量:1
  • 4Hershberger J, Snoeyink J. Speeding up the Douglas-Peucker Line Simplification Algorithm [C] // Proc. 5th Intl. Symp. On Spatial Data Handling, South Carolina, US, Aug 3-7, 1992, 1: 134-143. 被引量:1
  • 5Dan S. http: //softsurfer.com/Archive/algorithm_0205/algorithm_0205.htm, 2012. 被引量:1
  • 6Konrad E. A Correction to the Douglas-Peucker Line Generalization Algorithm [J]. Computers & Geosciences(S0098-3004), 2002, 28(8): 995-997. 被引量:1
  • 7http: //www.3dsoftware.com/Cartography/Programming/PolyLineReduction, 2012. 被引量:1
  • 8胡涛,郭宝平,郭轩,杨欧.基于轮廓特征的图像配准[J].光电工程,2009,36(11):118-122. 被引量:10
  • 9张佐理.一种抗压缩的矢量地图水印算法[J].计算机工程,2010,36(20):137-139. 被引量:5
  • 10米学军,盛广铭,张婧,白焕新,侯伟.GIS中面积偏差控制下的矢量数据压缩算法[J].地理科学,2012,32(10):1236-1240. 被引量:13

共引文献2

同被引文献44

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部