期刊文献+

粒子群算法求解混合战略近似纳什均衡 被引量:9

New PSO based algorithm for finding mixed strategy approximate Nash equilibrium
下载PDF
导出
摘要 为了有效降低纳什均衡求解的复杂度并提高其计算效率,提出了一种粒子群算法近似求解混合战略纳什均衡的新方法。在介绍混合战略纳什均衡理论的基础上,提出了混合战略纳什均衡定义的计算形式,并据此提出了混合战略近似纳什均衡的概念,给出了粒子群算法求解混合战略近似纳什均衡的方法步骤。通过仿真验证了近似纳什均衡理论及粒子群求解过程的正确性,与原粒子群算法进行比较,得到新粒子群算法时效性更强的结论。 This paper proposed a new method for solving mixed strategy pseud Nash equilibrium using particle swarm algorithm to reduce the complexity and consuming time of the solving process. After it introduced the mixed strategy Nash equilibrium theory,and gave the calculational form of mixed strategy Nash equilibrium and the concept of mixed strategy approximate Nash equilibrium. It gave the procedures for solving mixed strategy approximate Nash equilibrium by particle swarm algorithm.The simulation results show that approximate Nash equilibrium theory and the process of particle swarm algorithm are correct.Also the new particle swarm algorithm is more effective compared to former particle swarm algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2014年第8期2299-2302,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61003252 61201209)
关键词 博弈论 近似纳什均衡 粒子群算法 混合战略 game theory approximate Nash equilibrium particle swarm algorithm mixed strategy
  • 相关文献

参考文献18

  • 1STANKOVIC M S, JOHANSSON K H, STIPANOVIC D M. Distribu- ted seeking of Nash equilibria with applications to mobile sensor net- works [ J ]. I EEE Trans on Automatic Control, 2012,57 ( 4 ) : 904- 919. 被引量:1
  • 2FRIHAUF P, KRSTIC M, BASAR T. Nash equilibrium seeking in noncooperative gaines [ J]. IEEE Trans on Automatic Control, 2012,57(5) :1192-1207. 被引量:1
  • 3HESAMZADEH M R, BIGGAR D R. Computation of extremal-Nash equilibria in a single-stage MILP [ J ]. IEEE Trans on Power Sys- tem,2012,27(3 ) : 1706-1707. 被引量:1
  • 4Xiaohui Yu Qiang Zhang.Fuzzy Nash equilibrium of fuzzy n-person non-cooperative game[J].Journal of Systems Engineering and Electronics,2010,21(1):47-56. 被引量:2
  • 5LEMKE C, HOWSON I. Equilibrium points of bimatrix games[ J].Journal of Society of Industrial and Applied Mathematics, 1964, 12(4) :413-423. 被引量:1
  • 6GOVINDAN S, WILSON R. A global Newton method to compute Nash equilibria[ J ]. Journal of Economic Theory, 2003,110 ( 1 ) : 65- 86. 被引量:1
  • 7HERINGS P J J, PEETERS R J A P. A differentiable homotopy to compute Nash equilibriua of n-person games [ J ]. Economic Theory, 2001,18( 1 ) :159-186. 被引量:1
  • 8LUNG R, DUMITRESCU D. An evolutionary model for solving multi- player noncooperative games [ C ]// Proc of International Conference on Knowledge Engineering, Principles and Teehniques. [ S. 1. ] :IEEE Press, 2007:209-216. 被引量:1
  • 9PAVLIDIS N G, PARSOPOULOS K E, VRAHATIS M N. Computing Nash equilibria through computational intelligence methods [ J ]. Jour- nat of Computational and Applied Mathematics, 2005,175 ( 1 ) : 113-136. 被引量:1
  • 10余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37

二级参考文献49

  • 1F.Kacher,M.Larbani.Existence of equilibrium solution for a non-cooperative game with fuzzy goals and parameters.Fuzzy Sets and Systems,2008,159(2):164-176. 被引量:1
  • 2Q.Zhang,Z.X.Hu,T.M.Huang.Mixed fuzzy multi-objective many-person noncooperative games and its solving method.Journal of Southern Yangtze University (Natural Science Edition),2005,4(1):94-97. 被引量:1
  • 3D.Garagic,J.B.Cru,Lr.An approach to fuzzy noncooperative game Nash games.Journal of optimization Theory and Applications,2003,118(3):475-491. 被引量:1
  • 4I.Nishizalki,M.Sakawa.Equlibrium solutions in muliobjective bimatrix games with fuzzy payoff and fuzzy goals.Fuzzy Sets and Systems,2000,111(1):99-116. 被引量:1
  • 5Q.Song,A.A.Kandel.Fuzzy approach to strategic games.IEEE Trans.on Fuzzy Systems,1999,7(6):634-642. 被引量:1
  • 6W.Kim,K.Lee.Fuzzy fixed point and existence of equilibria of fuzzy games.Journal of Fuzzy Math,1998,6(1):193-202. 被引量:1
  • 7D.Butnariu.Fuzzy games:a description of the concept.Fuzzy Sets and Systems,1978,1(3):181-192. 被引量:1
  • 8S.A.Orlovski.On Programming with fuzzy constraint sets.Kybernetics,1977,6(3):197-201. 被引量:1
  • 9R.K.Ragade.Fuzzy games in the analysis of options.Journal of Cybern,1976,6(3):213-221. 被引量:1
  • 10D.Dubois,H.Prade.Operations on fuzzy numbers.International Journal of Systems Science,1978,9(16):613-626. 被引量:1

共引文献62

同被引文献63

引证文献9

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部