期刊文献+

利用退火回归神经网络极值搜索算法求纳什均衡解 被引量:4

Nash Equilibrium Solution by Extremum Seeking Algorithm Based on Annealing Recurrent Neural Network
下载PDF
导出
摘要 针对如何解算n人非合作的动态博弈对策中的纳什均衡解问题,提出一种利用退火回归神经网络极值搜索算法解算纳什均衡解的方法.在动态博弈对策问题中,将每个竞争者视为一个代价函数,利用此算法可以使每个代价函数均收敛于其最小值,从而获得此对策的纳什均衡解.此算法不限制代价函数的具体形式,同时由于摒弃了正弦激励信号,解决了一般极值搜索算法中存在的输出量“颤动”现象和控制量来回切换问题,改善了系统的动态性能. An algorithm is proposed to solve the Nash equilibrium solution for an n-person noncooperative dynamic game by an annealing recurrent neural network for extremum seeking algorithm(ESA). In noncooperative dynamic game, each player is defined as a cost function. Each cost function will fast converge to its minimum point by the algorithm proposed, so that the Nash equilibrium solution can be obtained. ESA combined with the annealing recurrent neural network does not limit the formation of the cost functions or make use of search signals such as sinusoidal periodic signals, which can solve the "chatter" problem of the output and the switching problem of the control law in the general ESA, and improve the dynamic performance of the system.
出处 《控制与决策》 EI CSCD 北大核心 2006年第10期1167-1171,共5页 Control and Decision
关键词 非合作博弈 纳什均衡解 回归神经网络 极值搜索算法 Noncooperative game Nash equilibrium solution Recurrent neural network ESA
  • 相关文献

参考文献9

  • 1Basar T.Dynamic Noncooperative Game Theroy[M].Philadephia:SIAM,1999. 被引量:1
  • 2Umit Ozguner,Perkins W.A Series Solution to the Nash Strategy for Large Scale Interconnected System[J].Automatica,1977,13(2):313-315. 被引量:1
  • 3Basar T.Equilibrium Solution in Two-person Quadratic Decision Problems with Static Information Structures[J].IEEE Trans on Automatic Control,1975,20(3):320-328. 被引量:1
  • 4Moschini G C.Nash Equilibrium in Strictly Competitive Game:Live Play in Soccer[J].Economics Letter,2004,(85):365-371. 被引量:1
  • 5Wang H H,Yueng S,Krstic M.Experimental Application of Extremum Seeking on an Axial-flow Compressor[A].Proc of the American Control Conf[C].Philadelphia,1998:1989-1993. 被引量:1
  • 6Krstic M,Wang H.Design and Stability Analysis of Extremum Seeking Feedback for General Nonlinear Systems[A].Proc of the 36th Conf on Decision and Control[C].San Diego,1997:1743-1748. 被引量:1
  • 7郑大钟编著..线性系统理论[M].北京:清华大学出版社,1990:422.
  • 8Tang W S,Wang J.A Recurrent Neural Network for Minimum Infinity-norm Kinematic Control of Redundant Manipulators with an Improved Problem Formulation and Reduced Architecture Complexity[J].IEEE Trans on Systems,Man and Cybernetics,2001,31(1):98-105. 被引量:1
  • 9Pan Y,Ozguner U,Acarman T.Stability and Performance Improvement of Extremum Seeking Control with Sliding Mode[J].Control,2003,76(3):968-985. 被引量:1

同被引文献23

  • 1左斌,胡云安,施建洪.极值搜索算法的研究与进展[J].海军航空工程学院学报,2006,21(6):611-617. 被引量:19
  • 2左斌,胡云安,施建洪.变参数滑模极值搜索算法研究[J].海军航空工程学院学报,2005,20(4):439-442. 被引量:8
  • 3余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 4Tsien H S. Engineering cybernetics [M]. New York: McGraw-Hill Book Company, 1954. 被引量:1
  • 5Drakunov S, Ozguner U. Optimization of nonlinear system output via sliding mode approach[C]. IEEE Int Workshop on Variable Structure and Lyapunov Control of Uncertain Dynamical System. Sheffield, 1992: 61- 62. 被引量:1
  • 6Krstic M. Toward faster adaptation in extremum seeking control[C]. Proc of the 39th IEEE Conf on Decision and Control. Phoenix, 1999: 4766-4771. 被引量:1
  • 7Rotea M A. Analysis of multivariable extremum seeking algorithms[C]. Proc of the American Control Conf. Chicago, 2000: 437-443. 被引量:1
  • 8Walsh G C. On the application of multi-parameter extremum seeking control[C]. Proc of the American Control Conf. Chicago, 2000 : 411-415. 被引量:1
  • 9Pan Y D, Ozguner U, Acarman T. Stability and performance improvement of extremum seeking control with sliding mode[J].Int J of Control, 2003, 76 (9/ 10) : 968-985. 被引量:1
  • 10Ilker Tunay. Antiskid control for aircraft via extremumseeking[C]. Proe of the American Control Conf. Arlington VA, 2001 : 665-670. 被引量:1

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部