期刊文献+

多特征融合的图像自动变形 被引量:4

Multi-feature fusion-based image morphing
原文传递
导出
摘要 目的图像变形算法中特征基元提取和匹配方式大部分都是采用人机交互的方式进行,并且在遮挡区域变形时出现较多的鬼影和模糊现象,使得针对同一场景图像变形实现繁琐且效果不佳,针对这些问题提出一种基于多特征融合的自动图像变形算法。方法该算法提取多种图像特征信息(如Surf特征算子、Harris算子、Canny算子等)并进行多特征融合匹配,得到一个分布适当且对应关系正确的三角网格,再结合图像变形,实现自动图像插值。结果实验结果显示,自动的提取特征基元有效地减少了人工操作,而多特征融合匹配有效地抑制了图像变形时边缘或遮挡区域鬼影的产生。结论提出的融合匹配方法,将不同的特征信息有效地融合匹配从而改善了图像变形算法。通过对多组实验结果进行问卷调查,91%的参与者认为该算法有效地改进图像变形结果。 Objective Image morphing algorithm is a branch of image-based rendering( IBR). Normally,it extracts features and matches features by human-computer interaction. However,there are problems in such human-computer interaction algorithms. When occlusion areas are processed,ghosting and blurring have a great chance to occur which are fatal to image morphing algorithms. All these phenomena lead to poor experimental results in the same scene. The implementations of old-fashioned image morphing algorithms are always complicated and inefficient and usually not suitable for practical application. In order to solve these problems,we propose a novel and efficient image morphing algorithm based on multi-feature fusion in this paper. Method In spite of marking two relevant images on edges,corners,and rich-texture areas by human-computer interaction,our proposal innovatively extracts multiple-image feature information( such as Surf feature,Harris feature,and Canny feature) with multi-feature fusion matching,which obtains a properly distributed triangle mesh pair with correct correspondence. Then,automatic image interpolation is achieved by the conjunction of triangle mesh and image morphing. We select Surf feature,Harris feature,and Canny feature as basic features. First,we extract these image features from the original image and destination image. Then,we process Surf feature based on Delaunay triangulation to obtain an initial triangle mesh. It is fusion matched with Harris features or other image features. According to this step,an accurate and uniform triangle mesh is acquired. We also define a matching cost function,a feature point of color intensity cost,and a grade matching cost to optimize the matching of features. It improves the accuracy of image feature matching. Finally,the image is transformed based on the acquired triangle mesh to a virtual view image between the original image and destination image. Result In the conventional image morphing algorithm,the system will take a long time to choose feature poin
出处 《中国图象图形学报》 CSCD 北大核心 2014年第7期1012-1020,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61300131) 国家自然科学青年基金项目(41201468)
关键词 多特征 融合匹配 自动 图像变形 multi-feature fusion matching automatic image morphing
  • 相关文献

参考文献18

  • 1Beier T,Neely S. Feature-based image metamorphosis[J]. Computer Graphics,1992,26(2): 35-42. 被引量:1
  • 2Mahajan D,Huang F,Matusik W, et al. Moving gradients: a path-based method for plausible image interpolation[J]. ACM Trans on Graph,2009,28(3):#42.[DOI:10.1145/1576246.1531348]. 被引量:1
  • 3Shechtman E,Rav-Acha A,Seitz S. Regenerative morphing[J]. Computer Vision and Pattern Recognition, 2010, 13(18): 615-622. 被引量:1
  • 4Smythe D B.A two pass mesh warping algorithm for object transformation and image interpolation[J]. ILM Computer Graphics Department,1990,10(5):56-60. 被引量:1
  • 5Beier T,Neely S. Feature-based image metamorphosis[J]. SIGGRAPH\'92 Conference Proceedings,1992,26:34-42. 被引量:1
  • 6Lee S,Chwa K,Hahn J, et al. Image morphing using deformation techniques[J]. The Journal of Visualization and Computer Animation,1996,7(1):3-23. 被引量:1
  • 7Seitz S M,Dyer C R.View morphing: uniquely predicting scene appearance from basis[J].Computer Graphics, 1996,25(3):21-30. 被引量:1
  • 8Bao P,Xu D. Multiresolution image morphing in wavelet domain[C]//Proceedings of International Conference on Information Visualization. London,Britain: IEEE,2000:309-314[DOI:10.1109/IV.2000.859773]. 被引量:1
  • 9Zitnick C L,Kang S B, Uyttendaele M, et al. High-quality video view interpolation using a layered representation[C]//Proceedings of ACM SIGGRAPH and ACM Transactions on Graphics. Los Angeles,CA,USA: ACM, 2004:600-608. 被引量:1
  • 10Harris C,Stephen S M.A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference.University of Manchester. Manchester,Britain: AVC, 1988:147-151. 被引量:1

二级参考文献9

  • 1唐荣锡 汪嘉业.计算机图形学教程[M].北京:科学出版社,1994.. 被引量:26
  • 2朱桂斌.[D].长沙:国防科技大学电子工程学院,1997. 被引量:1
  • 3[1]Smith S M,Brady J M. SUSAN-A New Approach to Low Level Image Processing [R]. UK: Oxford University, 1995 被引量:1
  • 4[2]Miroslav T,Mark H. Fast corner detection [J]. Image and Vision Computing,1998,16(1) :75~87 被引量:1
  • 5[3]Mokhtarian F,Suomela R. Curvature scale space for robust image corner detection [A].In: Proc. of Fourteenth Intl. Conf. on Pattern Recognition. vol 2,1 6-20,1998. 1819-1821 被引量:1
  • 6[4]Orrite C,Lopez J E,Alcolea A. Curve segmentation by continuous smoothing at multiple scales. In: Proc. of Intl. Conf. on Image Processing. vol 3,16-19,1996. 579~582 被引量:1
  • 7[5]Kwanghoon S, Kim J H, Alexander W E. A mean field anealing approach to robust corner detection [J]. IEEE Transaction on Systems,Man and Cybernetics,Part B. 1998,28(1):82~90 被引量:1
  • 8[6]Saint-Marc P, Chen J-S, Medioni G. Adaptive Smoothing: A General Tool for Early Vision [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1991,13(6) :514~529 被引量:1
  • 9杨金钟,刘政凯,俞能海,吴皓.基于控制点的图象变形方法及其应用[J].中国图象图形学报(A辑),2001,6(11):1070-1074. 被引量:10

共引文献24

同被引文献26

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部