期刊文献+

基于小波能量谱分析与SVM的柴油机气阀间隙异常故障诊断 被引量:4

Abnormal Fault Diagnosis of Gas Valve Clearance in Diesel Engine Based on Wavelet Energy Spectrum Analysis & SVM
下载PDF
导出
摘要 船舶动力设备因故障监测信号样本少、变化缓慢、数据特征呈非线性,使得设备故障模式的准确识别和状态预测比较难。尤其是柴油机气阀间隙异常的故障诊断,由于柴油机气阀间隙振动信号噪声多,利用SVM对柴油机气阀间隙进行预测时需要进行特征提取。鉴于此,研究了基于小波能量谱分析的SVM柴油机气阀间隙的故障诊断方法,结果表明上述模型具有较高的识别率,能准确预测船舶动力设备当前状态。 Ship power equipment makes fault pattern recognition and state prediction more difficult due to few samples, slow changes and the nonlinear structure of data of fault monitoring signal. Especially for diesel engine valve gap abnormal fault diagnosis, due to the vibration and noise of diesel engine valve gap is much, feature extraction is needed when using SVM to predict the valve gap of diesel engine. In view of this, a fault diagnosis method of SVM diesel engine valve clearance based on wavelet energy spectrum analysis is studied. The results show that the above model has a high recognition rate, and it can accurately predict the current state of marine power equipment.
作者 蒋佳炜 胡以怀 柯赟 陈彦臻 JIANG Jiawei;HU Yihuai;KE Yun;CHEN Yanzhen(Shanghai Maritime University,Shanghai 201306,China)
机构地区 上海海事大学
出处 《机电设备》 2018年第4期58-65,共8页 Mechanical and Electrical Equipment
关键词 小波分析 支持向量机 遗传算法 故障模式识别 wavelet analysis SVM genetic algorithms fault pattern recognition
  • 相关文献

参考文献8

二级参考文献30

共引文献45

同被引文献35

引证文献4

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部