期刊文献+

分布余弦函数

Distribution Cosine Functions
下载PDF
导出
摘要 本文给出分布余弦函数的定义 ,其中包括生成元为多值算子情形 ,并讨论退化性型分布余弦函数与退化型二阶 Cauchy问题、退化型积分余弦函数的关系 ,最后说明了非退化分布余弦函数的生成元亦生成正则余弦函数 . In this paper we define distribution cosine functions covering the degenerate case. We also consider the degenerate distribution function generated by a multi valued operator A, its relation to the integrated cosine function and the wellposedness of the degenerate abstract Cauchy problem. We prove that A generates a distribution cosine function if and only if there is a k∈N∪{0} such that C k+1 (τ) is wellposed. Furthermore, we show that every generator of a nondegenerate distribution cosine function generates a regularized cosine function.
作者 方全蕾 李淼
出处 《应用泛函分析学报》 CSCD 2002年第1期75-80,共6页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金 (1 9971 0 3 1 )
关键词 分布余弦函数 退化型Cauchy问题 正则余弦函数 distribution cosine function degenerate cauchy problem regularized cosine function
  • 相关文献

参考文献10

  • 1Kunstmann P C. Distribution semigroups and abstract Cauchy problems[J]. Trans Amer Math Soc, 1999,351(2): 837-856. 被引量:1
  • 2Melnikova I V, Anufrieva U A, Ushkov V Yu. Degenerate semigroups and well-posedness of the Cauchy problem[J]. Integral Transform Spec Funct, 1998, 6: 247-256. 被引量:1
  • 3Wang S W. Quasi-distribution semigroups and integrated semigroups[J]. J Funct Anal, 1997, 146:352-381. 被引量:1
  • 4赵荣侠.光滑分布半群与积分半群──退化情形[J].数学年刊(A辑),2000,1(2):175-188. 被引量:1
  • 5Jine Shi. C-Semigroups Integrated, Cosine Functions and Quasi-Distribution Cosine Functions[D]. Nanlng University, 1999. 被引量:1
  • 6Fattorini H O. The Cauchy Problem[M]. Addison-Welsley, 1983. 被引量:1
  • 7Wang H Y, Wang S W. C-cosine operator functions and the application to the second order abstract Cauchy problem[A]. Functional Analysis in China[C], Klumer Acad Publ(Netherlands), 1996, 333-350. 被引量:1
  • 8Arendt W. Local Integrated Semigroups: Evolution with jumps of Regularity[J]. J Math Analysis Appl,1994, 186:572-595. 被引量:1
  • 9Frank Neubrander. Integrated semigroups and their application to the abstract Cauchy problem[J]. Pacific J Math, 1998, 135: 111-155. 被引量:1
  • 10郑权著..强连续线性算子半群[M].武汉:华中理工大学出版社,1994:350.

二级参考文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部