期刊文献+

一类快速扩散方程解的积分型极值原理及其在区域边界上的Blow up 被引量:2

An Integral Type Maximum Principle and Blow up on the Boundary of the Solution for a Fast Diffusion Equation
下载PDF
导出
摘要 证明了对一类快速扩做方程(|u(x,t)|^(n-1)·u),-△u+c(x,t)·u=0的第三非线性初-边俘问题的古典解满足积分型极值原理,并由此推出如果全局解不存在,那么解必在区域边界上Blow up。 For a class of fast diffusion equation (|u(x,t|n-1·u)t+△u+c(x,t)·u = 0 with nonlinear third boundary condition ,an integral type maximum principle is established. By applying this result it is shown that the solution will blow up on the boundary if there are not any global solutions.
机构地区 厦门大学数学系
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1991年第4期355-360,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金
关键词 扩散方程 极值原理 边界 爆破 Maximum principle,Blow up,Diffusion equation
  • 相关文献

参考文献3

  • 1董光昌,非线性二阶偏微分方程,1988年 被引量:1
  • 2严子谦,线性与拟线性椭圆型方程,1987年 被引量:1
  • 3辜联昆,科学通报,1983年,28卷,317页 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部