期刊文献+

快速扩散方程的第二临界指标及解的生命跨度 被引量:3

Secondary Critical Exponent and Life Span for a Fast Diffusion Equation
下载PDF
导出
摘要 主要考虑快速扩散方程的Cauchy问题,根据初值在无穷远处的衰减行为建立第二临界指标,并且也考虑爆破解的生命跨度. In this paper, we consider the positive solution to a Cauchy problem of a fast diffusion equation and give the secondary critical exponent on the decay asymptotic behavior of an initial value at infinity. Furthermore, the life span of the blow-up solution is also studied.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2012年第5期904-913,共10页 Acta Mathematica Scientia
基金 四川省教育厅自然科学重点项目(09ZA119) 四川省教育厅自然科学科研项目(09ZC011)资助
关键词 第二临界指标 生命跨度 快速扩散 慢衰减初值 Secondary critical exponent Life span Fast diffusion equation Slowly decay initial data.
  • 相关文献

参考文献16

  • 1Qi Y W. The critical exponents of parabolic equations and blow-up in RN. Proc Roy Soc Edinburgh Sect A, 1998, 128:123 -136. 被引量:1
  • 2Galaktionov V A. Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124:517- 525. 被引量:1
  • 3Galaktionov V A, Kurdyumov S P, Mikhailov A P, et al. Unbounded solutions of the Cauchy problem for the parabolic equation ut = V(u^△Vu) + u^β. Soviet Phys Dokl, 1980, 25:458 -459. 被引量:1
  • 4Mochizuki K, Mukai K. Existence and nonexistence of global solutions to fast diffusions with source. Methods Appl Anal, 1995, 2:92-102. 被引量:1
  • 5Qi Y W. On the equation ut = Au^α + w^β. Proc Roy Soc Edinburgh Sect A, 1993, 123:373- 390. 被引量:1
  • 6Qi Y W. The critical exponents of degenerate parabolic equations. Sci China Ser A, 1994, 38:1153- 1162. 被引量:1
  • 7Guo J S, Guo Y J. On a fast diffusion equation with source. Tohoku Math J, 2001, 53:571 -579. 被引量:1
  • 8Mukai K, Mochizuki K, Huang Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal, 2000, 39:33 -45. 被引量:1
  • 9Gui C, Wang X. Life span of solutions of the Cauchy problem for a semi-linear heat equation. J Differential Equations, 1995, 115:166 -172. 被引量:1
  • 10Huang Q, Mochizuki K, Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values. Hokkaido Math J, 1998, 27:393 -407. 被引量:1

同被引文献10

  • 1Qi Y w. The critical exponents of parabolic equations and blow-up in R^N[J]. Proc Roy Soc Edinburgh Sect A, 1998, 128: 123-136. 被引量:1
  • 2Guo J S, Guo Y J. On a fast diffusion equation with source[J]. Tohoku Math J, 2001, 53:571-579. 被引量:1
  • 3Mukai K, Mochizuki K, Huang K. Large time behavior and life span for a quasilinear parabolic equation with decaying initial values[J]. Nonlinear Anal, 2000, 39: 33-45. 被引量:1
  • 4Jorge Garcia-Melian, Femando Quiros. Fujita exponents for evolution problems with nonlocal diffusion[J]. Journal of Evolution Equations, 2010, 10: 147-161. 被引量:1
  • 5Zhang Guosheng, Wang Yifu. Critical exponent for nonlocal diffusion equations with Dirichlet boundary condition[J]. Mathmatical and Computer Modelling, 2011, 54:203-209. 被引量:1
  • 6Escobedo M, Herrero M A. Boundedness and blow up for a semilinear reaction-diffusion system[J]. J Differential Equations, 1991, 89: 176-202. 被引量:1
  • 7Qing Huang, Kiyoshi Mochizuki, Kentaro Mukai. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values[J]. Hokkaido Mathematical Journal, 1998, 27: 393-407. 被引量:1
  • 8Qi Y W, Levine H A. The critical exponent of degenerate parabolic systems[J]. Z Angew Math Phys, 1993, 44:249-265. 被引量:1
  • 9齐远伟.Critical exponents of degenerate parabolic equations[J].Science China Mathematics,1995,38(10):1153-1162. 被引量:4
  • 10张敏华.一类非局部渗流扩散方程的爆破分析[J].福建教育学院学报,2016,17(4):118-121. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部