摘要
介绍了在批量处理时间序列情况下 ,BP神经网络辨识预测电力负荷的方法和步骤。网络成批训练 ,使得权重矢量和偏导数矢量都同时与所有训练矢量的变化成正比地改变。由于采用附加动量项和自适应率等措施 ,克服了BP规则的局限性 ,加快了训练速度 ,增强了网络的泛化能力。在此基础上对某地区实际电力负荷进行了预测 ,取得了满意的结果。
The method and steps of BP (Back Propagation) neural network for recognizing and forecasting power load in batch data processing of chronological sequence is presented. Batch training of network makes weight vectors and its partial derivative vectors proportionally follow the change of all training vectors. The application of additional momentum and adaptive learning rate overcomes the limitation effect of BP rule, accelerates the training speed and strengthens the generalization ability of network. The real power load of a district is forecasted based on it and the satisfied results are achieved.
出处
《电力自动化设备》
EI
CSCD
北大核心
2002年第5期20-21,共2页
Electric Power Automation Equipment