期刊文献+

小数据集条件下基于双重约束的BN参数学习 被引量:7

Learning Bayesian Network Parameters under Dual Constraints from Small Data Set
下载PDF
导出
摘要 针对小数据集条件下的贝叶斯网络(Bayesian network,BN)参数学习问题,提出了一种基于双重约束的贝叶斯网络参数学习方法.首先,对网络中的参数进行分析并将网络中的参数划分为:父节点组合状态相同而子节点状态不同的参数和父节点组合状态不同而子节点状态相同的参数;然后,针对第一类参数提出了一种新的基于Beta分布拟合的贝叶斯估计方法,而针对第二类参数利用已有的保序回归估计方法进行学习,进而实现了对网络中参数的双重约束学习;最后,通过仿真实例说明了基于双重约束的参数学习方法对小数据集条件下贝叶斯网络参数学习精度提高的有效性. In this paper, a novel dual constraints based parameter learning algorithm is presented to overcome the problem of Bayesian network (BN) parameter learning from small data sets. First, the parameters in the network are analyzed and classified into classes as follows: parameters referring to different child states sharing the same parent configuration state and parameters referring to different parent configuration states sharing the same child state. Then, a novel beta distribution approximation based Bayesian estimation method is proposed, which is suitable for the learning of the first category parameters. Meanwhile, previously proposed isotonic regression estimation method is employed to compute the second category parameters. Finally, simulations demonstrate the effectiveness of the proposed algorithm on improving the precision of Bayesian network parameter learning from small data set.
出处 《自动化学报》 EI CSCD 北大核心 2014年第7期1509-1516,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60774064) 教育部博士点基金(20116102110026)资助~~
关键词 贝叶斯网络 参数学习 小数据集 BETA分布 保序回归 Bayesian network (BN) parameter learning smalldata set beta distribution isotonic regression
  • 相关文献

参考文献28

二级参考文献71

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:184
  • 2郭小宾,王壮,胡卫东.基于贝叶斯网络的目标融合识别方法研究[J].系统仿真学报,2005,17(11):2713-2716. 被引量:18
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4高晓光,史建国.变结构离散动态贝叶斯网络及其推理算法[J].系统工程学报,2007,22(1):9-14. 被引量:22
  • 5Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162. 被引量:1
  • 6Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752. 被引量:1
  • 7Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45. 被引量:1
  • 8Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8. 被引量:1
  • 9Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845. 被引量:1
  • 10Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002. 被引量:1

共引文献38

同被引文献50

  • 1Pearl J. Probabilistic Reasoning in Intelligent Systems. Mas- sachusetts: Morgan Kaufmann, 1988. 被引量:1
  • 2Tamda Y, Imoto S, Araki H, Nagasaki M, Printe C, Charnock-Jones D S, Miyano S. Estimating genome-wide gene networks using nonparametric Bayesian network mod- els on massively parallel computers. IEEE/ACM Transac- tions on Computational Biology and Bioinformatics, 2011, 8(3): 683-697. 被引量:1
  • 3Chang R, Shoemaker R, Wang W. A novel knowledge-driven systems biology approach for phenotype prediction upon ge- netic intervention. IEEE/ACM Transactions on Computa- tional Biology and Bioinformatics, 2011, 8(5): 1170-1182. 被引量:1
  • 4Ibrahim W, Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semi- conductor gates. IEEE Transactions on Reliability, 2011, 60(3): 538-549. 被引量:1
  • 5Druzdzel M J. Probabilistic Reasoning in Decision Support Systems: From Computation to Common Sense [Ph.D. dis- sertation], Carnegie Mellon University, Pennsylvania, 1993. 被引量:1
  • 6Druzdzel M, van der Gaag L C. Building probabilistic net- works: "where do the numbers come from?" guest editors' introduction. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(4): 481-486. 被引量:1
  • 7Sijbers J, den Dekker A J, Scheunders P, Van Dyck D. Maximum-likelihood estimation of Rician distribution pa- rameters. IEEE Transactions on Medical Imaging, 1998, 17(3): 357-361. 被引量:1
  • 8Helsper E M, van der Gaag L C, Groenendaal F. Designing a procedure for the acquisition of probability constraints for Bayesian networks. In: Proceedings of the 14th Conference on Engineering Knowledge in the Age of the Semantic Web. Whittlebury Hall, UK: Springer, 2004. 280-292. 被引量:1
  • 9Wittig F, Jameson A. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian net- works. In: Proceedings of the 16th International Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2000. 644-652. 被引量:1
  • 10Altendorf E E, Restificar A C, Dietterich T G. Learning from sparse data by exploiting monotonicity constraints. In: Proceedings of the 21st International Conference on Uncer- tainty in Artificial Intelligence. Arlington, Virginia: AUAI Press. 2005. 18-26. 被引量:1

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部