期刊文献+

递推的贝叶斯估计方法 被引量:6

A Survey of Recursive Bayesian Estimation Methods
下载PDF
导出
摘要 对贝叶斯估计的原理及应用进行了综述,在系统阐述贝叶斯估计理论的基础上,按照对后验概率密度函数表示方式的不同,分析和总结了隐马尔可夫模型、卡尔曼滤波、分布拟合滤波以及粒子滤波等算法的特点、使用方法和使用范围;最后,对贝叶斯估计的发展方向进行了展望。 The theory and applications related to sequential Bayesian estimation were surveyed. Various estimating algorithms, such as the Hidden Markov Model, the Kalman Filter, the Assumed-density Filter and the Particle Filter were analyzed and summarized according to the way their posterior density function are expressed. Finally, further research directions are pointed out.
机构地区 [
出处 《四川兵工学报》 CAS 2013年第10期130-136,共7页 Journal of Sichuan Ordnance
关键词 贝叶斯估计 隐马尔可夫模型 卡尔曼滤波 分布拟合 粒子滤波 sequential Bayesian estimation hidden Markov model Kalman filter assumed-density filter particle filter
  • 相关文献

参考文献44

  • 1Merwe R V. Sigma-Point Kalman fihers for probabilistic in- ference in dynamic state-space models [ D ]. USA: School of Science & Engineering at Oregon Health & Science Univer- sity ,2004. 被引量:1
  • 2Kitagawa G. Monte Carlo filter and smoother for non-Gauss- ian nonlinear state space models [ J ]. Journal of Computa- tional and Graphical Statistics, 1996 (5) : 1 - 25. 被引量:1
  • 3Kitagawa G. The two-filter formula for smoothing and an im- plementation of the Gaussian-sum smoother [ J ]. Annals In- stitute of Statistical Mathematics, 1994,46 (4) :605 - 623. 被引量:1
  • 4Fong W, Doucet A, West M. Monte Carlo smoothing with application to audio signal enhancement[ J ]. IEEE Transac- tions on Signal Processing,2001. 被引量:1
  • 5Martinerie F and Forster P. Data association and tracking u- sing hidden Markov models and dynamic programming [ C ]//Proceedings of IEEE International Conference on A- coustic, Speech and Signal Processing. San Francisco, USA : IEEE,1992. 被引量:1
  • 6Rabiner L R. A tutorial on hidden Markov models and se- lected applications in speech recognition [ J ]. Proc. IEEE, 1989,77(2) :257 -285. 被引量:1
  • 7Rabiner L R,Juang B H. An introduction to hidden Markov models [ J ]. IEEE Acoustic, Speech, Signal Processing Mag- azine, 1986:4 - 16. 被引量:1
  • 8Kalman R E. A new approach to linear filtering and predic- tion problems [ J ]. Transactions of the ASME-Journal of Basic Engineering,1960:82(D) :35 -45. 被引量:1
  • 9Neal R. Markov chain sampling methods for Dirichlet process mixture models [ J ]. Journal of Computational and Graphical Statistics ,2000:249 - 265. 被引量:1
  • 10Saul L K, Jordan M I. Mixed memory Markov models:De- composing complex stochastic processes as mixtures of sim- pler ones[ J]. Machine Learning, 1999,37( 1 ) :75 - 87. 被引量:1

共引文献5

同被引文献50

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部