期刊文献+

大数据时代公共管理应用决策4M思维:理论思考与实践探索 被引量:13

The 4M Thinking Mode for Public Management in the Big Data Era: Theoretical Thoughts and Practical Exploration
原文传递
导出
摘要 近年来,大数据在公共管理领域的应用日趋增加,但由于缺乏理论指导,其应用决策往往无一定之规。相比于技术层面创新,思维方式变革在大数据时代更为重要。本质上,公共大数据具有"广泛记录"和"有限描述"特性。为保证其利用的科学性、合理性和可靠性,在公共管理应用决策中,应建立4M思维:即通过微观探究(Microscope),发掘数据的内在价值;凭借复合利用(Mixability),提升数据的知识挖掘广度;以语义为导向(Meaning),实现数据与应用的有效结合;采用多维分析(Multidimension),保证数据应用结论的有效性。在分析的基础上,结合北京市交通治理的实践,对大数据的应用思维进一步诠释。 In recent years, more and more big data applications have arisen in the field of public management. However, due to the lack of systematic theory guidance, the decision-making process of government always faces many challenges. Comparing with the innovation of technology, the revolution of thinking mode is actually much more important. In essence, the public big data is characterized by the "extensive records" and "limited description". To ensure the scientificity, rationality, and reliability of big data applications, it is significant to establish the brand new 4 M thoughts in our work. First, with the "Microscope" thought, the value of data is able to be fully explored;second, with the "Mixability" thought, a wide range of knowledge could be discovered from data;third, with the "Meaning" thought, the data and applications could be well integrated;fourth, with the "Multidimension" thought, the correctness and effectiveness of data analysis results could be guaranteed. On the basis of all the theoretical discussions, the newly proposed 4 M thinking mode for big data applications is further explained with the exploration and practices of traffic governance in Beijing.
作者 孙轩 孙涛 Sun Xuan;Sun Tao
机构地区 南开大学
出处 《上海行政学院学报》 CSSCI 北大核心 2019年第1期56-65,共10页 The Journal of Shanghai Administration Institute
基金 国家自然科学基金重点项目"现代社会治理的组织与模式研究"(71533002) 国家社会科学基金重大项目"基于大型调查数据基础上中国城镇社区结构异质性及其基层治理研究"(15ZDB173) 国家社会科学基金重大项目"人工智能对新时代政府治理的挑战和应对研究"(18VZL006)的阶段性成果
关键词 大数据 公共管理 4M思维 应用决策 治理能力 Big Data Public Management 4M Thinking Mode Decision Making Governance Capability
  • 相关文献

参考文献9

二级参考文献103

共引文献2347

同被引文献200

引证文献13

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部