摘要
采用球磨法将不同含量的石墨烯与纯钛粉末混合,通过放电等离子烧结工艺在1 200℃制备石墨烯/Ti基复合材料。使用扫描电子显微镜、X射线衍射仪研究复合粉末混合前后的形貌和物相结构;用显微硬度计、摩擦磨损试验机以及三维白光轮廓仪等分析复合材料的显微硬度和摩擦磨损性能。结果表明:干法球磨和放电等离子制备的复合材料组织致密,石墨烯均匀分布在钛基体中,提高基体材料的显微硬度和耐磨性;当石墨烯的质量分数为0.8%时,复合材料硬度值增加到350.3HV,相对纯钛基体提高14.7%;当石墨烯的质量分数为0.6%时,复合材料的磨损体积降低到3.3×107μm3,相对纯钛基体降低19.5%;加入石墨烯对复合材料的摩擦因数影响不明显,摩擦因数为0.474~0.488。
Graphene and pure titanium powders were mixed by ball milling methods.The spark plasma sintering(SPS)process were applied to fabricate graphene/Ti matrix composites at 1 200 ℃.The morphology and phase structure of the composite powder were investigated by scanning electron microscopy(SEM)and X-ray diffraction(XRD).The microhardness,friction and wear properties of the composites were also analyzed.The results show that the graphene/Ti composites are compact and the graphene nanosheets are uniformly distributed in Ti matrix.The composites have better wear resistance and microhardness than pure Ti matrix.When the mass fraction of graphene is 0.8%,the microhardness of the composites reaches 350.3HV.Compared with pure titanium matrix,the microhardness of the composites is increased by 14.7%.The addition of graphene has no significant effect on the coefficient of friction(COF)of the composite.The COF of the composite is between 0.474 and 0.488.The addition of graphene can significantly reduce the wear volume of the composite.When the mass fraction of graphene is0.6%,the wear volume of the composite reduces to 3.3×10^7μm^3,which is 19.5% lower than that of the pure Ti matrix.
作者
王伟
周海雄
王庆娟
王成
孙亚玲
邹武
WANG Wei;ZHOU Haixiong;WANG Qingjuan;WANG Cheng;SUN Yaling;ZOU Wu(School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China;Lingyun Science &Technology Group Co.,Ltd,Dangyang 444100,China;Hunan Jinyang Carbon New Materials Co.,Ltd,Liuyang 410323,China)
出处
《兵器材料科学与工程》
CAS
CSCD
北大核心
2019年第1期26-32,共7页
Ordnance Material Science and Engineering
基金
国家自然科学基金青年基金(51605249)
凝固技术国家重点实验室(西北工业大学)开放课题资助(SKLSP201828)
关键词
石墨烯
钛基复合材料
摩擦磨损
放电等离子烧结
graphene
titanium matrix composites
friction and wear
spark plasma sintering