期刊文献+

融合知识图谱与深度学习的药物发现方法 被引量:15

A Method Combining Knowledge Graph and Deep Learning for Drug Discovery
下载PDF
导出
摘要 海量增长的生物医学文献给文献挖掘技术带来巨大挑战.文中提出融合知识图谱与深度学习的药物发现方法,从已发表的文献中挖掘疾病的潜在治疗药物.首先抽取生物医学文献中实体间的关系,构造生物医学知识图谱,再通过知识图谱嵌入方法将知识图谱中的实体和关系转化为低维连续的向量,最后使用已知的药物疾病关系数据训练基于循环神经网络的药物发现模型.实验表明,文中方法不仅可以有效找到疾病的候选药物,还能提供相应的药物作用机制. The massive growing amount of biomedical literature brings huge challenges for data mining. In this paper,a method combining knowledge graph and deep learning is proposed to discover potential therapeutic drugs for disease of interest. Firstly,a biomedical knowledge graph is constructed with the relations extracted from biomedical literature. Then,the entities and relations of the knowledge graph are converted into low dimension continuous embeddings by knowledge graph embedding method.Finally,a recurrent neural network based drug discovery model is trained by using the known drugdisease related associations. The experimental results show that the proposed method can discover drugs for diseases and provide the drug mechanism of action.
作者 桑盛田 杨志豪 刘晓霞 王磊 赵迪 林鸿飞 王健 SANG Shengtian;YANG Zhihao;LIU Xiaoxia;WANG Lei;ZHAO Di;LIN Hongfei;WANG Jian(School of Computer Science and Technology, Dalian University of Technology, Dalian 116024;Institute of Health Service and Blood Research, Academy of Military Medical Sciences, Beijing 100850)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2018年第12期1103-1110,共8页 Pattern Recognition and Artificial Intelligence
基金 国家十三五重点研发计划项目(No.2016YFC0901902) 国家自然科学基金项目(No.61272373)资助~~
关键词 数据挖掘 生物医学知识图谱 深度学习 循环神经网络 Data Mining Biomedical Knowledge Graph Deep Learning Recurrent Neural Network
  • 相关文献

同被引文献221

引证文献15

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部