期刊文献+

层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响 被引量:10

Influence of Inter-Pass Temperature on Residual Stress in Multi-Layer and Multi-Pass Butt-Welded 9% Cr Heat-Resistant Steel Pipes
原文传递
导出
摘要 使用有限元法研究了不同层间温度(IPT)时,在9%Cr热强钢管道多层多道焊接头残余应力演化中马氏体相变作用的差异,揭示了层间温度对残余应力作用的机理。结果表明,提高层间温度可以显著降低接头内的残余拉应力,特别是管道中部区域焊缝(WM)内的残余拉应力降低明显。其机理主要有2方面:一是提高层间温度可保留较高含量的奥氏体,屈服强度低的奥氏体在冷却时积累的残余拉应力较低;二是高的层间温度阻止了马氏体相变在每道焊道焊完后立即进行,从而避免了马氏体相变降低拉应力的效果被后焊焊道的焊接热循环所消除和在随后焊道的焊接热循环中重新积累较大的拉应力。层间温度对9%Cr热强钢管道多层多道焊残余应力分布的影响取决于热收缩和马氏体相变的综合作用,当层间温度较低(低于马氏体转变终了温度Mf)时,热收缩占主导作用,此时接头的大部分区域以残余拉应力为主,只在末道焊道焊缝及其热影响区(HAZ)内形成较大的压应力;当层间温度较高(高于马氏体转变开始温度Ms)时,马氏体相变占主导作用,此时接头以残余压应力为主。 9% Cr heat-resistant steels have been abundantly used in boilers of modern thermal plants. The 9% Cr steel components in thermal plant boilers are usually assembled by fusion welding.Many of the degradation mechanisms of welded joints can be aggravated by welding residual stress. Tensile residual stress in particular can exacerbate cold cracking tendency, fatigue crack development and the onset of creep damage in heat-resistant steels. It has been recognized that welding residual stress can be mitigated by low temperature martensitic transformation in 9%Cr heat-resistant steel. Nevertheless, the stress mitigation effect seems to be confined around the final weld pass in multi-layer and multipass 9% Cr steel welded pipes. The purpose of this work is to investigate the method to break through this confine. Influence of martensitic transformation on welding stress evolution in multi-layer and multipass butt-welded 9%Cr heat-resistant steel pipes for different inter-pass temperatures(IPT) was investigated through finite element method, and the influential mechanism of IPT on welding residual stress was revealed. The results showed that tensile residual stress in weld metal(WM) and heat affected zone(HAZ), especially the noteworthy tensile stress in WM at pipe central, was effectively mitigated with the increasing of IPT. The reasons lie in two aspects, firstly, there is more residual austenite in the case of higher IPT, as a result, lower tensile stress is accumulated during cooling due to the lower yield strength of austenite; secondly, the higher IPT suppresses the martensitic transformation during cooling of each weld pass, thus the tensile stress mitigation due to martensitic transformation was avoided to be eliminated by welding thermal cycles of subsequent weld passes and reaccumulating tensile residual stress. The influence of IPT on welding residual stress relies on the combined contribution of thermal contraction and martensitic transformation. When the IPT is lower than martensite transformation finishing t
作者 胡磊 王学 尹孝辉 刘洪 马群双 HU Lei;WANG Xue;YIN Xiaohui;LIU Hong;MA Qunshuang(School of Materials Science andEngineering,Anhui University of Technology,Ma'anshan,Anhui 243032,China;School ofPowerandMeehanics,Wuhan University,Wuhan 430072,China;Dong Fang Boiler Group Co.,Ltd.,Dong Fang Electric Corporation,Zigong 643001,China)
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2018年第12期1767-1776,共10页 Acta Metallurgica Sinica
基金 国家自然科学基金项目Nos.51374153和51574181 四川省科技计划项目No.2018JY0668~~
关键词 9%Cr热强钢 多层多道焊 层间温度 残余应力 数值模拟 9%Cr heat-resistant steel multi-layer and multi-pass welding inter-pass temperature residual stress numerical simulation
  • 相关文献

参考文献9

二级参考文献85

共引文献106

同被引文献114

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部