摘要
考虑二阶微分方程f″ +[exp(P1) +exp(P2 ) +Q(z) ]f=0 ,这里P1=p1zn+… ,P2 =p2 zn+…是非常数多项式 ,Q(z)是阶小于n的整函数 ,该文研究当 - 1<p2 /p1<0时 ,方程解的振荡结果 .
We consider the second order equation f ″+( e P 1 + e P 2 +Q(z))f=0,where P 1(z)=p 1z n+..., P 2(z)=p 2z n+..., are non-constant polynomials,Q(z) is an entire function and order of Q is less than n.Bank, Laine and Langley studied the cases when Q is a polynomial and p 1/p 2 is either non-real negative, Ishizaki and Tohge studied the cases when p 1=p 2 ,p 1/p 2 is non-real or p 2/p 1<1/2.In this paper we treat the case when -1<p 2/p 1<0.
出处
《江西师范大学学报(自然科学版)》
CAS
2002年第1期10-14,59,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目 (1976 10 0 2 )