期刊文献+

缓冲包装系统跌落破损边界曲线研究 被引量:6

Study on Dropping Damage Boundary Curve of Cushion Packaging System
下载PDF
导出
摘要 建立了线性和非线性缓冲包装系统的无量纲跌落冲击方程 ,得到了产品最大加速度响应 ,提出了评价线性和非线性包装系统产品安全与否的跌落破损边界曲线概念。对于线性包装系统 ,固有频率和跌落冲击速度是产品跌落破损的评价量 ;对于非线性包装系统 ,系统参数和无量纲跌落冲击速度是产品跌落破损的评价量。 The dimensionless dropping shock equations for linear and non linear cushion package system are developed,and the maximum acceleration response of product is obtained.Then,a concept of dropping damage boundary curves for linear and non linear package systems in the evaluation of product dropping damage is suggested.In linear package system,the nature frequency and dropping shock velocity are the evaluation quantites for dropping damage of product.In non linear packaging system,the system parameter and dimensionless dropping shock velocity are the evaluation quantities.
作者 胡长鹰
出处 《包装工程》 CAS CSCD 北大核心 2001年第6期4-7,共4页 Packaging Engineering
基金 江苏省跨世纪学术带头人基金 教育部骨干教师基金资助项目
关键词 跌落破损边界曲线 线性包装系统 包装设计 非线性包装系统 缓冲包装系统 跌落冲击响应 跌落冲击方程 Dropping damage boundary curve Package linear package system Non linear package system
  • 相关文献

参考文献6

  • 1Newton R E.Fragility assessment theory and test procedure[R].MTS Systems corp.Report 160.06,1976. 被引量:1
  • 2Wang Z W,Hu C Y.Shock spectra and damage boundary curves for non-linear package cushioning systems[J].Packaging technology and science,1999(12) 被引量:1
  • 3Wang Z W,Hu C Y.Recent development in analysis and design method of non-linear cushioning packaging system[A].In: IAPRI (Ed.),Proceedings of the 11 th IAPRI world conference on packaging[C].Singapore,1999. 被引量:1
  • 4Wang Z W .Shock spectra and damage boundary curves for hyperbolic tangent cushioning systems and their important features[J].Packaging technology and science,2001 (14) 被引量:1
  • 5王振林,肖艳萍,奚德昌.矩形波冲击对具有立万非线性产品包装损坏曲线[R].中国包装年鉴,1996. 被引量:1
  • 6Wand Z L,Wu C F,Xi D C.Damage boundary of a packaging system under rectangular pulse excitation[J].Packaging technology and scieace,1998(11) 被引量:1

同被引文献66

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部