摘要
相对熵密度的极限性质是信息论的一个重要问题 .当任意信息源是可列实数集时 ,探讨相对于独立型几何分布的熵密度偏差的极限性质 ,获得三个相对熵密度的强偏差定理 .在n→+∞时 。
The limit property of relative entropy density is one o f important problem in the information theory.The limit properties of deviation of relative entropy with respect to the independent geometry distribution are disc ussed and three strong deviation theorems of relative entropy density which give the estimate of strong large number of the deviation when n→∞ are obtained.
出处
《泉州师范学院学报》
2001年第4期9-12,23,共5页
Journal of Quanzhou Normal University
关键词
几何分布
相对熵密度偏差
任意信息源
强偏差定理
强大数估计
极限性质
geometry distribution
deviation of relative entropy densit y
arbitrary information source
almost everywhere convergence