摘要
在非线性最小二乘问题现有的 3类主要算法高斯 牛顿法、阻尼最小二乘法和最小二乘的拟牛顿法的基础上 ,引入了综合性能更优的非线性规划的SQPM (序列二次规划法 )算法 ,并且为进一步提高SQPM算法迭代的收敛性 ,对其步长策略进行了改进。改进的SQPM算法成为无需精确计算参数概略值的非线性最小二乘参数平差的实用和有效算法。
In addition to the three existing nonlinear squares algorithmsGauss-Newton method, damped lwast squares method and quasi-Newton method on least squares, a better algorithmSQPM (Sequential Quadratic Programming Method) as one of the most powerful algorthms of nonlinear programming is applied. And the step-length policy of SQPM is improved in order to advance the iterative convergency. The improved SQPM becomes a useful and effective algorithm to solve parameters problems by nonlinear least squares adjustment without exactly computing the approximation of parameters.
出处
《测绘学院学报》
北大核心
2001年第3期173-175,共3页
Journal of Institute of Surveying and Mapping