期刊文献+

一种快速实现波形识别的电池分类算法 被引量:9

A Fast Algorithm Based on Curve Recognition for Cells Classfication
下载PDF
导出
摘要 针对目前电池分类算法的局限性,在试验的基础上,依据统计分析原理,阐述了密封AA型MH-Ni电池的充放电电压和容量的概率分布服从正态分布的规律,提出了一种基于数据分析理论的阈值准则分选电池的分类算法.该算法利用电池在充电、放电时记录的采样数据,计算容量值和电压均值,根据阈值准则进行波形识别分类.给出了三种算法的分类结果,验证了该算法比其它算法更具有可行性,实现了快速、准确识别出放电容量和充放电电压特性曲线一致的电池. The probability distribution of charge/discharge voltage and capacity for all AA-size Ni-MH cells were as the law of normal function. A classification algorithm based on a threshold value of statistical data analysis theory for MH-N cell was introdued. The method computed the capacity value and the average value of vltage, according to the data recorded dur- ing charge/discharge process. At last that curve of identification can be made by the threshold val- ue rules. The results of three classification algorithm are compared to indicate the better feasibility of the new algorithm than other classification algorthms whose cells of common property capacity and charge/discharge curve were recognized quickly and accurate.
出处 《哈尔滨理工大学学报》 CAS 2001年第4期52-56,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金资助项目(E9910) 黑龙江省教委指导项目(9553038)
关键词 MH-NI电池 波形识别 阈值 分类算法 充放电容量 充放电电压 MH-Ni cell waveform recognition threshold value classification algorithm
  • 相关文献

参考文献4

二级参考文献11

共引文献22

同被引文献69

引证文献9

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部