期刊文献+

互累积量迫零法信号源盲分离 被引量:2

Cross-Cumulant Zero-Forcing Blind Source Separation
下载PDF
导出
摘要 利用高阶累积量进行信号源盲分离的已有算法都需要进行复杂的矩阵代数运算 ,且这类算法不具备所希望的等变特性 ,对于病态混合矩阵的盲分离问题可能无法求解 .通过利用迭代算法迫使经过非线性函数变换的混合信号互累积量矩阵对角化的方法 ,提出了一种新的基于高阶累积量的具有等变特性的信号源盲分离算法 .该算法所采用的累积量矩阵对角化方法不依赖于混合矩阵 ,也不需要对累积量矩阵进行代数变换 ,并且所使用的迭代算法不需要对任何变量求导 ,因此非常简单 ,易于实现 ;同时算法还具有对未经去除均值的混合信号直接进行分离的能力 . Blind source separation algorithms based on higher order cumulants are all involved in complicated matrix algebra. In addition, this kind of algorithm lacks the equi-variant property that is desirable in blind source separation. These algorithms may have difficulty in separating mixtures when they are ill conditioned. A new equi-variant algorithm for blind source separation was proposed by diagonalizing the cross-cumulant matrix of the mixed signals that are first transformed by some nonlinear functions. The diagonalization is performed by some iterative algorithms but not matrix algebra and is not dependent on the mixing matrix. The iterative algorithm used for matrix diagonalization does not require the computation of derivatives of any variables so that it is simple and easy to implement. The proposed algorithm can also perform the separation when the mean is not removed from the mixture.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2001年第8期1159-1162,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目 (6 9772 0 0 1)
关键词 信号源盲分离 独立分量分析 累积量 迫零法 非线性函数变换 分离能力 Algorithms Analysis Matrix algebra Separation Signal processing
  • 相关文献

参考文献6

  • 1[1]Jutten C, Herault J. Blind separation of sources. Part Ⅰ. An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24:1~20. 被引量:1
  • 2[2]Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals [J]. IEEE Proceedings-F, 1993, 140(6):362~370. 被引量:1
  • 3[3]Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Transactions on Signal Processing, 1996, 44:3017~3030. 被引量:1
  • 4[4]Amari S, Cichocki A. Adaptive blind signal processing: neural network approaches [J]. Proceedings of the IEEE, 1998, 86(10):2026~2048. 被引量:1
  • 5[5]Cardoso J F. Blind signal separation: statistical principles [J]. Proceedings of the IEEE, 1998,86(10):2009~2025. 被引量:1
  • 6[6]Nikias C L, Raghuveer M. Bispectrum estimation: a digital signal processing framework [J]. Proceedings of the IEEE, 1987, 75(7):869~891. 被引量:1

同被引文献19

  • 1李传翘,周其节,毛宗源,苏树珊,杨同辉.自适应模糊神经网络的优化辨识及仿真[J].华南理工大学学报(自然科学版),1997,25(9):102-105. 被引量:3
  • 2高克芳,陈亚光.一种改进的盲信号分离方法[J].中南民族大学学报(自然科学版),2004,23(1):38-41. 被引量:4
  • 3肖明,谢胜利.线性非奇异盲信号混叠的分离矩阵个数[J].华南理工大学学报(自然科学版),2004,32(10):41-45. 被引量:3
  • 4Cao X R,Liu R W.General approach to blind source separation[J].IEEE Trans on Signal Processing,1996,44(3):562-571. 被引量:1
  • 5Hyvarinen A,Oja E.Independent component analysis:algorithms and applications[J].Neural Networks,2000,13:411-430. 被引量:1
  • 6Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634. 被引量:1
  • 7Andrzej C,Wlodzimierz K.Local adaptive learning algorithms for blind separation of nature images[J].Neural Network World,1996,6(4):515-523. 被引量:1
  • 8Lyon R H. Machinery noise and diagnostics [M].Butterworths.. Boston, 1987. 被引量:1
  • 9Jing Lin. Feature extraction of machine sound using wavelet and its application in fault diagnosis [J].NDT & E International, 2001,34 : 25-- 30. 被引量:1
  • 10Shibata K, Takahashi A, Shirai T. Fault diagnosis of rotating machinery through visualisation of sound signals[J]. Mechanical Systems and Signal Processing,2000,14(2) :229-- 241. 被引量:1

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部