期刊文献+

多振源卷积混合的时域盲源分离算法 被引量:11

Temporal Blind Source Separation Algorithm for Convolution Mixtures with Muti Vibration Sources
下载PDF
导出
摘要 在机械多源振动传播和卷积混合模型的基础上,提出一种基于时域的多振源卷积混合信号的盲源分离算法。该算法以独立性为评判准则,采用反向学习和合理简化滤波器系数的方式,进行滤波器系数的学习,进而实现基于时域的多振源卷积混合信号的分离。仿真试验和多机振动源试验结果表明,该算法对于多源卷积混合信号具有很好的分离效果,可应用于机械设备多激振源卷积混合情况下机械振动源信号的有效分离。 On the basis of the model of multi-source mechanical vibration propagation and convolution mixtures, a blind source separation (BSS) algorithm for convolution mixture signals with multiple vibration sources based on time domain is proposed. This algorithm takes independence as judgment criterion, and carries out the learning of filter coefficient by adopting the mode of back- ward learning and rational simplification of filter coefficient, then realizes the separation of convolution mixture signals with multi- ple vibration sources based on time domain. The results of simulation test and multi-source mechanical vibration test indicate that the algorithm can achieve good effect in separating multi-source convolution mixture signals.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第1期189-194,199,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50205025 50675194)。
关键词 机械振动 卷积混合 多振源 盲源分离 时域 Mechanical vibration Convolutive mixture Multi vibration sources Blind source separation Time domain
  • 相关文献

参考文献14

二级参考文献30

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:210
  • 2ZHONG Zhen-mao, CHEN Jin, ZHONG Ping State Key Laboratory of Vibration, Shock & Noise, Shanghai Jiaotong University, Shanghai 200030,P. R. China.The Research of Blind Source Separation (BSS) in Machinery Fault Diagnosis[J].International Journal of Plant Engineering and Management,2001,6(1):41-46. 被引量:1
  • 3胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 4Lyon R H. Machinery noise and diagnostics [M].Butterworths.. Boston, 1987. 被引量:1
  • 5Jing Lin. Feature extraction of machine sound using wavelet and its application in fault diagnosis [J].NDT & E International, 2001,34 : 25-- 30. 被引量:1
  • 6Shibata K, Takahashi A, Shirai T. Fault diagnosis of rotating machinery through visualisation of sound signals[J]. Mechanical Systems and Signal Processing,2000,14(2) :229-- 241. 被引量:1
  • 7Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000,14 (3) : 427-- 442. 被引量:1
  • 8Comon P. Independent component analysis, a new concept? [J]. Signal Processing, 1994,36 (1) : 287--314. 被引量:1
  • 9Adel B, Karim A M, Cardoso J F, et al. A blind source separation technique using second-order statistics [J]. IEEE Trans on Signal Processing,1997,45(2) :434--444. 被引量:1
  • 10Cardoso J F. Blind signal separation: statistical principles [J]. Proceedings of the IEEE, 1998,86 (10) :2009--2025. 被引量:1

共引文献56

同被引文献96

引证文献11

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部