摘要
本文将三角形求积公式 S=1/2absinC 在四面体中推广,得到并证明了定理:若四面体中过同一顶点的三个侧面面积分别为 S_1、S_2、S_3且以此顶点为角顶的三面角为α则此四面体体积为V=1/3(2S_1S_2S_3sinα)
This paper spreads the formula of a triangular quadrature(S=1/2absinC)into tetrahedron.The author advances and proves the new theorem:if the three side areas through identical apex is S_1,S_2, S_3 respectively,and the trihedral angle of taking the apex as the top is α_0,then,a tetrahedral volume V=1/3(2S_1S_2S_3sinα_0)^(1/2)
出处
《衡阳师专学报》
1991年第6期62-63,共2页
Journal of Hengyang Normal University
关键词
四面体
体积
三角形
面积
formula of a triangular quadrature
spread
formula of a tetrahedral volume