期刊文献+

基于SOFM神经网络的变压器故障诊断研究 被引量:1

Study of Transformer Fault Diagnosis Based on SOFM Neural Network
下载PDF
导出
摘要 SOFM神经网络具有强大的非线性映射能力和高度的自组织和自学习能力,将SOFM神经网络应用于变压器的故障诊断.利用改进的罗杰斯三比值法获取变压器故障诊断的特征向量,建立了SOFM网络故障诊断模型,并对模型进行训练.为了检验模型的实际诊断能力,以变压器的4种典型故障诊断为例进行仿真实验.仿真结果表明:SOFM神经网络能够根据获胜神经元在竞争层的位置对变压器故障进行判断,诊断准确率高,收敛速度快,泛化能力强,表明基于SOFM网络的变压器的故障诊断是一种行之有效的方法. Self-organizing feature mapping(SOFM)neural network has a strong nonlinear mapping ability as well as a powerful self-organizing and self-learning ability. It is applied to fault diagnosis of transformers. Improved Rogers three-ratio method is used to obtain the characteristic vectors of transformer fault diagnosis. First,a diagnosis model based on SOFM neural network is established and trained. To test the practical diagnosis ability of the model , 4 kinds of typical faults of transformers are taken as examples in the simulation experiment. The simulation results show that SOFM neural network can identify the fault types according to the location of winning neurons in the com-peting layer. And it has high accuracy,fast convergence speed and strong generalization ability,which indicates that the transformer fault diagnosis method based on SOFM neural network is effective .
机构地区 渤海大学工学院
出处 《河南科学》 2014年第6期1037-1041,共5页 Henan Science
基金 国家自然科学基金(61104071)
关键词 SOFM神经网络 故障诊断 改进的罗杰斯三比值法 变压器 泛化能力 SOFM neural network fault diagnosis improved Rogers three-ratio method transformer general-ization ability
  • 相关文献

参考文献8

二级参考文献25

  • 1张承彪,罗运柏,文习山.主成分分析在变压器故障诊断中的应用研究[J].高电压技术,2005,31(8):9-11. 被引量:21
  • 2丁晓群,林钟云.神经网络应用于电力变压器故障诊断[J].电力系统自动化,1996,20(2):32-35. 被引量:43
  • 3苏宏升,李群湛.概念格在变压器故障诊断中的应用研究[J].高电压技术,2006,32(2):12-14. 被引量:6
  • 4虞和济,陈长征,张省,等.基于神经网络的智能诊断.北京:冶金工业出版社,1998. 被引量:1
  • 5飞思科技产品开发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005. 被引量:1
  • 6皱杰慧.电力变压器模糊专家系统的研究开发[D].湖南大学,2001. 被引量:1
  • 7苏宏升,李群湛.基于粗糙集、模糊集和证据理论的变压器绝缘故障诊断方法[C]//第六届全球智能控制与自动化大会论文集(WCICA2006),大连,中国,2006:5442-5446. 被引量:1
  • 8Su Hongsheng, Li Qunzhan. Fuzzy neural classifier for fault diagnosis of transformer based on rough set theory[ C]. Proceedings of the 8th Interna- tional Conference on Electrical Machines and Systems, Nanjing, P. R. China, pp,2223 - 2227, Sep,2005. 被引量:1
  • 9J.J. Dukarm. Transformer oil diagnosis using fuzzy logic and neural networks[ C ]. Canadian Conf. on Electrical and Computer Engineering, 1993,1:329 -338. 被引量:1
  • 10Zhang Y., et al. An artificial neural network approach to transformer fault diagnosis [ J ]. IEEE Transactions on Power Delivery, 1996,11 (4) : 1836 - 1841. 被引量:1

共引文献58

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部