摘要
从统动力系统(X,f)的研究与讨论中不难看出,由于自映射f不一定是同胚映射,所以系统(X,f)仅是一个拓扑空间上的半动力系统,为了避免它的不可逆性在理论研究上所带来的困难,我们引入了一个与其相关联逆极限空间上的移位映射,然后,又利用逆极限空间的知识,将逆极限空间,而后又在非紧致度量空间上,继续研究了f:X→,g:X→X的双重逆极限空间上移位映射σf°σg:lim←(X,(f°g))→lim←(X,(f°g))一些重要的双重动力性状.
From the discussion and research of dynamical system (X, f) is not difficult to see, since the map- ping fis not necessarily a homeomorphism mapping, so, the system (X, f) is only half the power system of a topol- ogical space. In order to avoid its irreversibility arising in theoretical research difficulties, we introduce an associat- ed shift maps on the inverse limit spaces, then, by using the inverse limit space of knowledge, the concept of the inverse limit space is extended to the double inverse limit space, and then in the non-compact metric space, contin- ue to study f: X→X, g:X→X of double shift maps on the inverse limit spaces σf°σg:lim←(X,(f°g))→lim←(X,(f°g)) some important dual dynamic characters.
出处
《洛阳师范学院学报》
2014年第8期1-4,共4页
Journal of Luoyang Normal University