期刊文献+

高斯随机数生成算法对比研究 被引量:1

Algorithm comparison on Gaussian random number generators
下载PDF
导出
摘要 针对应用学科仿真实验中所需高斯随机数质量要求日趋严格的问题,对比研究了高斯随机数常用的中心极限生成算法、Box-Muller算法和极化判决算法,研究了各算法在尾部区域内生成高斯随机数的质量.仿真结果表明:极化判决算法为最佳选择,在增加一定量运算代价下,换取高斯随机数的高尾部精度.需注意极化判决算法中由于用到判决语句,导致高斯随机数的产生速度不恒定,硬件实现时需用先入先出缓冲器解决该问题. Aiming at the quality of Gaussian random numbers in simulation experiments for various applied sciences,comparative study was made on the generate algorithms used to generating Gaussian random number, focusing on the quality of each algorithm to generate Gaussian random numbers in the tail region.Simulation results show that,namely to increase the operational costs,Polar-Rejection algorithm may well be the best option with high- tail accuracy.It should be noted that,due to using if-else statements in Polar-Rejection algorithm,resulting the rate of Gaussian random numbers is not constant.It should be using first-in first-out buffer to solve the problem in hardware implementation.
出处 《河南科技学院学报(自然科学版)》 2014年第3期56-59,共4页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(U1204606) 河南省基础与前沿技术研究计划项目(142300410004) 河南省教育厅科学技术研究重点研究项目(14B510020)
关键词 高斯随机数 模拟 Ganssian random number simulation
  • 相关文献

参考文献8

  • 1Fischer H.A history of the central limit theorem: From classical to modern probability theory[M].New York: Springer press,2010. 被引量:1
  • 2Thomas D B,Luk W,Leong P H W,et al.Gaussian random number generators[J].ACM Computing Surveys (CSUR),2007,39 (4): 11. 被引量:1
  • 3Box G,Muller M E.A note on the Generation of random normal deviates[J].Annals of Math. Stat.,1958,29(2) : 610-611. 被引量:1
  • 4Muller M E.A comparison of methods for generating normal deviates on digital computers[J].Joumal of the ACM (JACM), 1959,6 (3) :376-383. 被引量:1
  • 5Lee D U,Villasenor J D,Luk W,et al.A hardware Ganssian noise generator using the Box-Muller method and its error analysis[J]. IEEE Transactions on Computers,2006,55 ( 6 ) : 659-671. 被引量:1
  • 6Alimohammad A,Fard S F,Cockburn B F,et aLA compact and accurate Ganssian variate generator[J].IEEE Transactions on VLSI Systems,2008,16(5) :517-527. 被引量:1
  • 7D'Agostino R B.Goodness-of-fit-techniques[M].New York : CRC press,1986. 被引量:1
  • 8王松桂,张忠占,程维虎,高旅端.概率论与数理统计[M].北京:科学出版社,2011:71-73. 被引量:4

共引文献3

同被引文献10

  • 1刘玉君.信道编码[M]修订版.郑州:河南科学技术出版社,2001.. 被引量:3
  • 2Malik J S,Hemani A,Malik J N,et al. Revisiting CentralLimit Theorem:Accurate Gaussian Random Number Gen-eration in VLSI[J]. IEEE Transactions on VLSI Systems,2014,23(5):842-855. 被引量:1
  • 3Alimohammad A,Fard S F. FPGA-based bit error rate per-formance measurement of wireless systems[J]. IEEE Trans-actions on VLSI Systems,2014,22(7):1583-1592. 被引量:1
  • 4Yen S W,Hung S Y,Chen C L,et al. A 5. 79-Gb/ s en-ergy-efficient multirate LDPC codec chip for IEEE 802.15. 3c applications[J]. IEEE Journal of Solid-State Cir-cuits,2012,47(9):2246-2257. 被引量:1
  • 5L忆ecuyer P. Maximally equidistributed combined Tausworthegenerators[J]. Mathematics of Computation of the AmericanMathematical Society,1996,65(213):203-213. 被引量:1
  • 6Li Y,Chow P,Jiang J,et al. Software/ Hardware ParallelLong - Period Random Number Generation FrameworkBased on the WELL Method[J]. IEEE Transactions onVLSI Systems,2014,22(5):1054-1059. 被引量:1
  • 7Lu Q,Fan J,Sham C,et al. A high throughput Gaussiannoise generator[C] / / Proceedings of 2014 IEEE Asia Pa-cific Conference on Circuits and Systems. Ishigaki:IEEE,2014:117-120. 被引量:1
  • 8Tausworthe R C. Random numbers generated by linearrecurrence modulo two[J]. Mathematics of Computation,1965,19(90):201-209. 被引量:1
  • 9Kroese D P,Taimre T,Botev Z I. Handbook of MonteCarlo Methods [M]. New York:John Wiley & Sons,2013:301-345. 被引量:1
  • 10谷晓忱,张民选.多输出LFSR结构均匀分布伪随机数生成器的硬件设计优化[J].武汉大学学报(信息科学版),2010,35(5):566-569. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部