期刊文献+

基于图像的单样本人脸识别研究进展 被引量:7

The Latest Advances in Face Recognition with Single Training Sample
下载PDF
导出
摘要 基于单样本的人脸识别具有重要的应用价值,然而对仅有一个注册样本的人脸图像进行识别是一个具有极大挑战性的问题。对近年来提出的单样本人脸识别的算法进行分类和介绍,以识别率为指标对比了这些算法的实验结果,同时给出了这些实验针对的人脸数据库、数据库的规模和训练/测试样本集的划分;总结了影响单样本人脸识别率的关键因素及各算法的优缺点,分析了一些算法取得较优识别率的原因及未来可能的研究方向。 Face recognition system based on one gallery sample is very valuable for less laborious effort for collecting images and lowering the cost for storing and processing them. However, it is very challengeable to correctly recognize a person from face database with only one sample for everybody. Some algorithms to deal with one sample problem have been proposed in recent years. They are re- viewed and introduced simply, The correct recognition rates in experiments of these algorithms are compared and the relevant issues such as database, class number, and how to divide training set and testing set are also discussed. Some key factors in one sample face recognition are pointed out and some promising directions for future research are also proposed.
作者 杨军 刘妍丽
出处 《西华大学学报(自然科学版)》 CAS 2014年第4期1-5,10,共6页 Journal of Xihua University:Natural Science Edition
基金 国家自然科学基金(61373163) 四川省教育厅资助科研项目资助(11ZB069) 四川省可视化计算与虚拟现实四川省重点实验室项目(PJ2012001)
关键词 人脸识别 单样本 特征提取 子空间学习 通用库 face recognition single sample feature extraction subspace learning generic database.. .~.
  • 相关文献

参考文献25

二级参考文献77

共引文献63

同被引文献88

  • 1回红,陈祥献,周泓,汪乐宇.Gabor函数实现基于结构的指纹识别[J].浙江大学学报(工学版),2004,38(6):712-716. 被引量:9
  • 2赵银娣,张良培,李平湘.一种方向Gabor滤波纹理分割算法[J].中国图象图形学报,2006,11(4):504-510. 被引量:26
  • 3Candes E J,Romberg J,Terence Tao.Robust Uncertainty Principles:Exact Signal Reconstruction from highly Incomplete Frequency Information[J].IEEE Trans on Information Theory,2006,52(2):489-509. 被引量:1
  • 4Candes E J,Tao T.Near Optimal Signal Recovery from Random Projections:Universal Encoding Strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425. 被引量:1
  • 5Yaakov Tsaig,David L.Extensions of Compressed Sensing[J].Signal Processing,2005,86(3):549-571. 被引量:1
  • 6Peyr G.Best Basis Compressed Sensing[J].Signal Processing,IEEE Trans on,2010,5(5):2613-2622. 被引量:1
  • 7Oruklu E ,Pesty D, Neveux J, et al. Real Time Traffic Sign De- tection and Recognition for in-car Driver Assistance System [ C ]//IEEE Conference on Circuits and Systems (MWSCAS). Boise, USA: IEEE, 2012:976 - 979. 被引量:1
  • 8Andrey V, Kang Hyun Jo. Automatic Detection and Recognition of Traffic Signs using Geometric Structure Analysis [ C ]//SICE-ICASE Intemational Joint Conference. Busan, Korea : IEEE ;2006 : 1451 - 1456. 被引量:1
  • 9Broggi A, Cerri P, Medici P, et al. Real Time Road Signs Recognition[ C ]// IEEE Conference on Intelligent Vehicles Symposium. Istanbul, Turkey : IEEE,2007 : 81 - 86. 被引量:1
  • 10De la Escalera A, Armingol J M, Mata M. Traffic Sign Recogni- tion and Analysis for Intelligent Vehicles [ J ]. Image Vis Comput,2002, 21(3) : 247. 被引量:1

引证文献7

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部