期刊文献+

基于无累积误差滤波的数字稳像算法 被引量:2

Low-pass filter based digital video stabilization without cumulative error
下载PDF
导出
摘要 针对基于传统高斯滤波的数字稳像算法在运动平滑时使用固定权重,限制了对视频抖动的滤除能力问题,提出了基于无累积误差滤波的数字稳像算法。在运动估计中,对视频帧的特征点进行提取和匹配,基于仿射模型利用匹配的特征点估计两帧间的全局运动;在运动平滑中,直接对当前帧与其前后固定半径范围内相邻帧的运动估计参数进行均值滤波,避免了累计误差的问题。通过滤波在滤除抖动的同时,得到平滑的运动。实验证明,该方法具有更好的视频抖动滤除能力及良好的稳像效果。 To solve the inefficient of Gaussian filtering that perform motion smoothing by a constant Gaussian kernel,this paper proposed a novel low-pass filter based digital video stabilization method without cumulative error. In motion estimation step,it extracted and matched the features,and estimated the affine motion transformation parameters between two frames using matched features. In motion smoothing step,instead of reference frame,it used mean filtering locally to smooth the transformation parameters from the current frame to the neighboring frames,which was free from cumulative error. It removed jitter and in the same time also obtained the smoothed motion by a low-pass filter. The experiments show that the proposed method has the superior motion smoothing ability and good stabilization performance.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2213-2215,2223,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61071162)
关键词 数字稳像 运动平滑 累计误差 均值滤波 digital video stabilization motion smoothing cumulative error mean filter
  • 相关文献

参考文献12

  • 1MATSUSH1TA Y, OFEK E, GE W,et al. Full-fl'ame video stabilization with motion inpaiming [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2006,28( 7 ) : 1150-1163. 被引量:1
  • 2LITVIN A, KONRAD J, KARL W. Probabilistic video stabilization using Kahnan fihering and mosaicking [ C ]//Proc of [S&T/SPIE Symposium on Electronic huage, hnage and Video Communications,2003:663-674. 被引量:1
  • 3WANG Chun-tao, KIM J H, BYUN K Y, et al. Robust digital image stabilization using the Kalman filter [ J]. IEEE Trans on Consumer Electronics ,2009,55( 1 ) :6-14. 被引量:1
  • 4YANG Jun-lan, SCHONFELD D, MOHAMED M. Robust video stabili- zation based on particle filter tracking of projected camera motion [ J ]. IEEE Trans on Circuits and Systems for Video Technology, 2009,19 (7) :945-954. 被引量:1
  • 5SHEN Yao, GUTURU P, DAMARLA T, et al. Video stabilization using principal component analysis and scale invariant feature transform in particle filter framework [ J]. IEEE Trans on Consumer Electro- nics,2009,55(3) : 1714-1721. 被引量:1
  • 6SONG Chun-he, ZHAO Hai, JING Wei, et al. Robust video stabiliza- tion based on particle filtering with weighted feature points [ J ]. IEEE Trans on Consumer Electronics,2012,58(2) :570-577. 被引量:1
  • 7XU Jie, CHANG Hua-wen, YANG Shuo, et al. Fast feature-basedvideo without accumulative global motion estimation [ J ]. I EEE Trans on Consumer Electronics,2012,58(3 ) :993-999. 被引量:1
  • 8BATTIATO S ,GALLO G ,PUGLISI G ,et el. SIFT features tracking for video stabilization[ C ]//Proc of the 14th International Conference on Image Analysis and Processing. 2007:825-830. 被引量:1
  • 9LOWE D. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91-110. 被引量:1
  • 10BAY H, TUYTELAARS T, Van GOOL L. SURF:speeded up robust features [ C ] //Proc of European Conference on Computer Vision. 2006:404-417. 被引量:1

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部