期刊文献+

基于稳健回归的AFM图像水平矫正算法

An AFM Image Leveling Algorithm Based on Robust Regression
下载PDF
导出
摘要 AFM(Atomic Force Microscope,原子力显微镜)图像经常会出现背景倾斜或弯曲。背景倾斜的原因源于探针和样本表面的倾角或XYZ扫描仪带来的弯曲。本文将稳健的MM估计算法应用到AFM图像二维背景拟合中,消除背景的倾斜,并利用fast-s估计算法作为初始化,以缩短计算时间。实验结果表明,与传统方法相比,本方法的AFM图像水平矫正效果更好。 AFM images always have some background slope or curvature that must be removed from the image. Sources of the background can be an offset angle between the probe and surface, or curvature introduced into the image from the XYZ scanner. There are a number of background subtraction options that are possible. In this paper, we take use of mm-estimators, one most commonly employed robust regression technique to calculate the background in the image and enhance its speed via fast-s estima- tion approach. Numerical results prove its excellent performances in AFM image leveling compared with other traditional algo- rithms.
出处 《计算机与现代化》 2014年第6期88-93,共6页 Computer and Modernization
关键词 AFM图像水平矫正 稳健回归 MM估计 fast-s估计 AFM image leveling robust regression MM-estimator fast-s estimation
  • 相关文献

参考文献17

  • 1Binnig G, Quate C, Gerber C. Atomic force microscope [J]. Physical Review Letters, 1986,56(9):930-933. 被引量:1
  • 2Alex Chen, Andrea L, Paul D, et al. Enhancement and Recovery in Atomic Force Microscopy Images [DB/OL]. ftp://ftp.math.ucla.edu/pub/camreport/cam11-50.pdf, 2014-03-27. 被引量:1
  • 3龚立艳,徐立军,钱建强,姚骏恩.原子力显微镜图像降噪与平面校正的同步实现[J].高技术通讯,2008,18(7):725-731. 被引量:3
  • 4Klapetek P, Necas D, Anderson C. Gwyddion User Guide [DB/OL]. http://gwyddion.net/download/user-guide/gwyddion-user-guide-en.pdf, 2014-03-27. 被引量:1
  • 5Martin A, Robert C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Comm. of the ACM, 1981,24(6):381-395. 被引量:1
  • 6Peter J, Elvezio M. Robust Statistics (2nd Ed)[M]. Hoboken: John Wiley & Sons, 2009:8-18. 被引量:1
  • 7易三莉,陈真诚,林红利.稳健MM估计在扩散张量成像中的应用[J].计算机工程,2011,37(21):191-193. 被引量:2
  • 8Victor J. High breakdown-point and high efficiency robust estimates for regression [J]. The Annals of Statistics, 1987,15(2):642-656. 被引量:1
  • 9Andersen R. Modern Methods for Robust Regression [M]. Thousand Oaks: SAGE Publications, 2008:104-105. 被引量:1
  • 10Matías Salibian-Barrera, Victor J. A fast algorithm for s-regression estimates [J]. Journal of Computational and Graphical Statistics, 2006,15(2):414-427. 被引量:1

二级参考文献19

  • 1李淑霞,王汝霖,李春梅,许亮,李国新.基于噪声方差估计的小波阈值图像去噪新方法[J].计算机应用研究,2007,24(1):220-221. 被引量:17
  • 2Basser P J, Mattiello J. MR Diffusion Tensor Spectroscopy and Imaging[J]. Biophysical, 1994, 66(I): 259-267. 被引量:1
  • 3Chang Lin-Ching, Jones D K. RESTORE: Robust Estimation of Tensors by Outlier Rejection[J]. Magnetic Resonance in Medicine, 2005, 53(5): 1088-1095. 被引量:1
  • 4Plackett R L. Some Theorems in Least Squares[J]. Biometrika, 1950, 37(1/2): 147-159. 被引量:1
  • 5Yohai V J. High Breakdown Point Estimates of Regression by Means of the Minimization of an Efficient Scale[J]. Journal of American Statistical Association, 1988, 83(40): 406-413. 被引量:1
  • 6Field C A, Smith B. Robust Estimation---A Weighted Maximum Likelihood Approach[J]. International Statistical Review, 1995, 62(3): 405-424. 被引量:1
  • 7Yohai V J. High Breakdown-point and High Efficiency Robust Estimates for Regression[J]. The Annals of Statistics, 1987, 15(2): 642-656. 被引量:1
  • 8Ellison S L R. Performance of MM-estimators on Multi-modal Data Shows Potential for Improvements in Consensus Value Estimation[J]. Accreditation and Quality Assurance, 2009, 1996, 14(8/9): 411-419. 被引量:1
  • 9Sherma J, John D, Larkin F H. Atomic force microscopy. Journal of AOAC International, 2005, 88(6) : 133A-140A 被引量:1
  • 10Chandra D, Satish V. Image enhancement and noise reduction using wavelet transform. Midwest Symposium on Circuits and Systems, 1997, 2:989-992 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部