摘要
设 G1 与 G2 是由光滑 Jordan闭曲线γ1 与γ2 界成的区域 ,h是γ1 到γ2 的同胚。引进了由 h生成的拟对称函数ρh。当ρh由对数函数控制时 ,证明了存在 G1 到 G2 的μ(z) -同胚扩张Φ,它以 h为其边值函数 ,并且得到Φ的伸张函数 D*Φ 的增长阶的估值。
Let G 1 and G 2 be two domains bounded by smooth Jordan Closed Curves γ 1 and γ 2,h be a homeomorphism from γ 1 noto γ 2.In this paper,we introduce quasi symmetric function ρ h which is generated by function h.when quasi symmetric function ρ h is controled by logarithm function,we prove the existence of μ(z) homeomorphism extension Φ form G 1 to G 2,the boundary value function of Φ is function h.Finally,We obtain estimate on growth order of dilataion function D * φ.
出处
《工程数学学报》
CSCD
北大核心
2000年第4期123-126,共4页
Chinese Journal of Engineering Mathematics