期刊文献+

Image separation using wavelet-complex shearlet dictionary 被引量:2

Image separation using wavelet-complex shearlet dictionary
下载PDF
导出
摘要 This paper presents a new method for image separation through employing a combined dictionary consisting of wavelets and complex shearlets. Because the combined dictionary sparsely represents points and curvilinear singularities respectively, the image can be decomposed into pointlike and curvelike parts as accurate as possible. The proposed method based on the geo- metric separation theory introduced by Donoho in 2005 shows that accurate geometric separation of the morphologically distinct fea- tures of points and curves can be achieved by l1 minimization. The experimental results show that the proposed method can not only be effective but also greatly reduce the computing time. This paper presents a new method for image separation through employing a combined dictionary consisting of wavelets and complex shearlets. Because the combined dictionary sparsely represents points and curvilinear singularities respectively, the image can be decomposed into pointlike and curvelike parts as accurate as possible. The proposed method based on the geo- metric separation theory introduced by Donoho in 2005 shows that accurate geometric separation of the morphologically distinct fea- tures of points and curves can be achieved by l1 minimization. The experimental results show that the proposed method can not only be effective but also greatly reduce the computing time.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期314-321,共8页 系统工程与电子技术(英文版)
基金 supported by the Aviation Science Foundation(201120M5007) the Natural Science Foundation of Beijing(4102050)
关键词 geometric separation l1 minimization sparse approx-imation complex shearlet. geometric separation, l1 minimization, sparse approx-imation, complex shearlet.
  • 相关文献

参考文献1

二级参考文献13

  • 1Chen J Y, Reed I S . A detection algorithm for optical targets in clutter[ J]. IEEE Trans. on Aerospace and Electronic Systems, 1987,23 ( 1 ) :46-59. 被引量:1
  • 2Silverman J, Caefer C E, Viekers V E. Temporal filtering for point target detection in staring IR imagery; Ⅱ. Recursive variance filter[J]. Proc. SPIE. 1998,3373:45-53. 被引量:1
  • 3Lin J N, Nie X, Unbehauen R. Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing[ J ]. IEEE Transactions on Circuits and Systems: Analog and DigitalL Signal Processing, 1993:40(7 ) :417-428. 被引量:1
  • 4Li H, Wei Y T, Li L Q , et al. Infrared moving target detection and tracking based on tensor locality preserving projection [ J ]. infrared physics & technology. 2010,53 ( 2 ) : 77-83. 被引量:1
  • 5Porat B, Friedlander B. A frequency domain algorithm to muhiframe detection and estimation of dim targets [ J ].IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12 ( 4 ) : 398-401. 被引量:1
  • 6DelMarco S, Agaian S. The design of wavelets for image enhancement and target detection [ J ]. Proc. SPIE, 2009, 7351. 被引量:1
  • 7Zhang BY, Zhang TX, Cao ZG, et al. Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter[ J ]. SPIE optical engineering. 2007,46(10) : 106401-1 - 6. 被引量:1
  • 8Guo K , Labate D. Optimally sparse multidimensional representation using shearlets [ J ]. SIAM J. Math Anal. 2008, 39( 1 ) :298-318. 被引量:1
  • 9Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of gaussians in the wavelet domain [J]. IEEE Transactions on Image Processing, 2003, 12 (11) :1338-1351. 被引量:1
  • 10夏项团,朱进兴,刘学明,龚惠兴.地球反照辐射对太阳探头影响的研究[J].红外与毫米波学报,2008,27(1):27-30. 被引量:8

共引文献22

同被引文献20

  • 1OLIVER R,THOMAS F.Pixel-level image fusion:The case of image sequences[J].Proceedings of SPIE,1998,33(74):378-388. 被引量:1
  • 2MA H,JIA C Y,LIU S.Multisource image fusion based on wavelet transform[J].International Journal of Information Technology,2005,11(7):231-240. 被引量:1
  • 3LI W,ZHU X F.A new algorithm of multi-modality medical image fusion based on pulse-coupled neural networks[C]//Proceedings of International Conference on Advances in Natural Computation,Changsha,China:Springer,2005,3610:995-1001. 被引量:1
  • 4方勇,刘盛鹏.基于Contourlet变换和改进型脉冲耦合神经网络的图像融合方法[P].上海:CN1873693,2006-12-06. 被引量:1
  • 5GENG P,WANG Z Y,ZHANG Z G,et al.Image fusion by pulse couple neural network with Shearlet[J].Optical Engineering,2012,51(6):067005-1-067005-7. 被引量:1
  • 6DO M N,VETTERLIi M.The contourlet transform:an efficient directional multiresolution image representation[J].Proc.of IEEETrans.Image,2005,14(12):2091-2106. 被引量:1
  • 7GUO K,LABATE D.Optimally sparse multidimensional representation using Shearlets[J].SIAM Journal on Mathematical Analysis,2007,39(1):298-318. 被引量:1
  • 8LIU S,ZHAO J,SHI M Z.Medical image fusion based on rolling guidance filter and spiking cortical model[J].Computational and Mathematical Methods in Medicine,2015,2015:1-9. 被引量:1
  • 9苗启广,王宝树.基于Contourlet的图像融合新方法[J].计算机科学,2008,35(5):231-235. 被引量:9
  • 10张素文,陈娟.基于非负矩阵分解和红外特征的图像融合方法[J].红外技术,2008,30(8):446-449. 被引量:5

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部