期刊文献+

声源DOA估计中LS-SVR核函数选取研究 被引量:2

Selection Research of LS-SVR Kernels for Sound Source DOA Estimation
下载PDF
导出
摘要 基于多通道到达时间差(TDOA)的定位方法是声源到达方向(DOA)估计中的重要方法。其中,由TDOA到DOA的映射是该方法的一个关键,目前广泛采用的映射方法为最小二乘法。然而最小二乘法存在诸如声源位于阵列端射方向时性能急剧下降的问题。为克服这一缺点,提出了基于最小二乘支持向量回归机(LS-SVR)的映射方法。在支持向量机技术中,核函数的选取直接影响着支持向量机的性能,但之前的工作仅讨论了径向基核函数。针对声源DOA估计中的TDOA映射问题,研究了径向基核、多项式核以及线性核函数构造的LS-SVR对声源DOA估计的影响。 The technique based on time -differences- of- arrival (TDOAs) with multiple channels is an important method for the sound sources direction -of- arrival (DOA) estimation. One of its key technologies is the mapping of TDOAs to DOA. At present ,the least - squares based algorithm is widely used in sound sources DOA estimation. It has been noted that the perform- ance of the least - squares algorithm is deteriorated greatly around the end - fire directions. To combat this problem, a mapping method based on least- squared- support- vector- regression (IS- SVR) is proposed ,where is used radial basis kernel func- tion. The choice of kernel functions plays an important role in the SVM applications. The mapping construction of IS - SVR with radial basis kernel ,polynomial kernel and linear kernel function is focused,which influence the sound sources DOA estimation.
出处 《电声技术》 2014年第5期57-61,共5页 Audio Engineering
基金 国家自然科学基金项目(61001150) 江苏省自然科学基金项目(BK2010495)
关键词 核函数 LS-SVR DOA估计 Kernel function LS - SVR DOA estimation
  • 相关文献

参考文献14

  • 1WANG H, CHU P. Voice source localization for automatic camera pointing system in videoconferencing [ C l// Pro- ceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Munich, Germany: IEEE Press, 1997( 1 ) : 187 - 190. 被引量:1
  • 2KELLERMANN W. Beamforming for speech and audio sig- nals [ M]. New York: Springer,2009. 被引量:1
  • 3SONG KT,HU JS,TSAI CY, et al. Speaker attention system for mobile robots using microphone array and face tracking [ C ]//Proceedings of IEEE International Conference on Ro- botics and Automation. Orlando, Florida : IEEE Press, 2006 : 3624 - 3629. 被引量:1
  • 4YEGNANARAYANA B. Processing of reverberant speech for time- delay estimation [ J ].IEEE Transactions on Speech and Audio Processing,2005,13 ( 6 ) : 1110 - 1118. 被引量:1
  • 5戎晓政,刘加.声源定位中的时延估计方法研究[J].电声技术,2010,34(2):42-46. 被引量:14
  • 6HUANG Y, BENESTY J, CHEN J. Acoustic MIMO signal processing [ M]. Berlin : Springer,2006. 被引量:1
  • 7CHEN H, SER W. Sound source DOA estimation and locali-zation in noisy reverberant environments using least - squares support vector machines [ J ]. Journal of Signal Processing Systems ,2011,63 ( 3 ) : 287 - 300. 被引量:1
  • 8任会峰,阳春华,周璇,桂卫华,鄢锋.基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量[J].上海交通大学学报,2011,45(8):1136-1139. 被引量:3
  • 9DMOCHOWSKI J, BENESTY J,AFFES S. Direction of arri- val estimation using the parameterized spatial correlation ma- trix [ J]. IEEE Transactions on Audio,Speech,and Language Processing,2007,15 (4) : 1327 - 1339. 被引量:1
  • 10KNAPP C ,CARTER G. The generalized correlation method for estimation of time delay [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976,24(4) : 320 - 327. 被引量:1

二级参考文献32

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:48
  • 2张芬,陶亮,孙艳.基于混合核函数的SVM及其应用[J].计算机技术与发展,2006,16(2):176-178. 被引量:23
  • 3Suykens J A K.Nonlinear modeling and support vector machine[C]// Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001,1:287-294. 被引量:1
  • 4Cristianini S T N.Kernel methods for pattern analysis [M].Cambridge:Cambridge University Press,2004. 被引量:1
  • 5Cristianini N,Sbawe-Taylor J,Kandala J,et al.On kernel target alignment [C]//Diettrich T, Becker S, Ghahramani Z.Proceedings of Neural Information Processing Systems Conference,Vancouver, Canada, 2001.Cambridge, MA: MIT Press, 2002,14: 367-373. 被引量:1
  • 6Wu S,Amari S.Conformal transformation of kernel functions :A data-dependent way to improve support vector machine classifiers[J]. Neural Processing Letters, 2002,15 : 59-67. 被引量:1
  • 7Chapelle O,Vapnik V N.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159. 被引量:1
  • 8Chapelle O,Vapnik V N.Model selection for support vector machines[C]//Solla S A, Leen T K, Muller K R.Proceedings of Neural Information Processing Systems Conference, Denver,Colorado, USA, 1999.Cambridge, MA: MIT Press, 2000. 被引量:1
  • 9BRANDSTEIN M, WARD D. Microphone Array [M]. New York :Springer, 2001 : 158-159. 被引量:1
  • 10Knapp C H, Carter G C. The generalized correlation method for estimation of time delay[J]. IEEE Trans. on Acoustics, Speech and Signal Processing, 1976, 24(4): 320-327. 被引量:1

共引文献34

同被引文献17

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部