期刊文献+

基于多核最小二乘支持向量回归的TDOA-DOA映射方法 被引量:6

TDOA-DOA Mapping Using Multi-kernel Least-Squares Support Vector Regression
下载PDF
导出
摘要 基于到达时间差(Time difference of arrival,TDOA)估计的方法是声源波达方向(Direction of arrival,DOA)估计中的一类重要方法。其中由TDOA到DOA的映射是该类方法的关键步骤。本文提出了一种基于多核聚类最小二乘支持向量回归(Least-squares support vector regression,LS-SVR)的TDOA-DOA映射方法,并且分析了其稀疏化处理后的性能。为了提高混响噪声环境下的TDOA-DOA映射性能,本文还给出了一种基于归一化中值滤波的TDOA估计离群值消除方法。仿真结果表明,本文提出的方法要优于现有的最小二乘方法以及单核LS-SVR方法。 In sound source direction of arrival (DOA) estimation, one of the typical methods is based on the time difference of arrival (TDOA). For the TDOA-based sound source DOA estimation, the TDOA- DOA mapping is a crucial step. Here, we propose a TDOA-DOA mapping approach based on the multi- kernel least-squares support vector regression (LS-SVR), and also analyze its performance with sparsifi- cation. In addition, we present an outlier detection method based on the normalized median filtering to post-process the TDOA estimation for improving the performance of TDOA-DOA mapping in noisy re- verberant environments. Simulation results show that the proposed method is superior to its counter- parts, such as LS and single-kernel LS-SVR methods.
作者 张峰 陈华伟 李妍文 Zhang Feng Chen Huawei Li Yanwen(College of Electronic and Information Engineering, Naniing University of Aeronautics and Astronautics, Naniing, 210016, China)
出处 《数据采集与处理》 CSCD 北大核心 2017年第3期540-549,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61471190)资助项目
关键词 声源波达方向估计 到达时间差估计 最小二乘支持向量回归 多核学习 sound source DOA estimation TDOA estimation least-squares support vector regression(LS-SVR) multi-kernel learning
  • 相关文献

参考文献11

二级参考文献111

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 3谭颖,殷福亮,李细林.改进的SRP-PHAT声源定位方法[J].电子与信息学报,2006,28(7):1223-1227. 被引量:16
  • 4Dave R N.Generalized fuzzy C-shell clustering and detection of circular and elliptical boundaries[J].Pattern Recognition,1992,25(7):639-641. 被引量:1
  • 5Girolami M.Mercer Kernel-based Clustering in Feature Space[J].IEEE Trans.on Neural Networks,2002,13(3):780-784. 被引量:1
  • 6Sonnenburg S,Atsch G R,Afer S,et al.Large Scale Multiple Kernel Learning[J].Machine Learning Research,2006,(7):1531-1565. 被引量:1
  • 7Atsch G R,Sonnenburg S.Learning Interpretable SVMs for Biological Sequence Classfication[J].BCM Bioinformatics 2004,7(Suppl.1):39. 被引量:1
  • 8Vapnik V.The Nature of Statistical Learning Theory[M].New York.Springer-Verlag,1995. 被引量:1
  • 9Bach F R,Lanckriet R G,Jordan M I.Multiple Kernel Learning,Conic Duality,and the SMO Algorithm[C] //Proc of the 21st International Conference on Machine Learning,2004. 被引量:1
  • 10Chang C C,Lin C J.LIBSVM:a library for support vector machines[EB/OL].http://www.csie.ntu.edu.tw/ -cjlin/libsvm,2006. 被引量:1

共引文献460

同被引文献58

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部