期刊文献+

基于工况识别的混合动力汽车动态能量管理策略 被引量:25

Dynamic Energy Management Strategy of HEV Based on Driving Pattern Recognition
下载PDF
导出
摘要 针对固定循环工况下所制定的混合动力汽车能量管理策略存在一定局限性问题,从ADVISOR软件中选取覆盖车辆实际行驶工况的20个典型循环工况,以整车综合燃油消耗和动力电池寿命为综合优化目标,利用粒子群算法对各工况下能量管理策略中所涉及的关键参数进行了优化,并将得到的优化结果建立数据库,提出了基于行驶工况识别的混合动力汽车动态能量管理策略。最后,通过选择某个随机工况对所制定的能量管理策略进行仿真。结果表明:所制定的动态能量管理策略与未采用工况识别的能量管理策略相比,车辆综合燃油消耗下降10.70%,动力电池温升和平均有效工作电流分别下降2.46℃和1.63 A。 Energy management strategy of HEV which was built in invariable cycle condition existed some limitations. 20 typical cycle conditions which standed for vehicle real driving conditions were chosen from ADVISOR software and key control parameters of each driving cycle were optimized by using particle swarm algorithm as the comprehensive goal of vehicle total fuel consumption and power battery life, relevant optimized results were saved in database, an energy management strategy of HEV based on driving pattern recognition was proposed. Finally, simulation for the energy manage- ment strategy was carried out under a random driving condition, simulation results show that vehicle fuel consumption is cut down 10.70%, temperature rise and average operation current are cut down 2.46 ~C and 1.63 A respectively by using dynamic energy management strategy compared with energy management strategy without driving pattern recognition.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第11期1550-1555,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51305468) 中央高校基本科研业务费专项资金资助项目(CDJZR12110005) 机械传动国家重点实验室2012年度开放基金资助项目
关键词 混合动力汽车 工况识别 随机工况 动态能量管理策略 hybrid electric vehicle(HEV) driving pattern recognition random driving condition dynamic energy management strategy
  • 相关文献

参考文献12

  • 1Beck R, Saenger S, Riehert F, et al. Model Predic tire Control of a Parallel Hybrid Vehicle Drivetrain [C]//Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, 2005 : 2670-2675. 被引量:1
  • 2Pisu P,Rizzoni G. A Comparative Study of Supervi- sory Control Strategies for Hybrid Electric Vehicles[J]. IEEE Transactions on Control Systems Tech nology, 2007,15(3):506-518. 被引量:1
  • 3Li Weimin, Xu Guoqing, Wang Zhancheng, et al. Dynamic Energy Management for Hybrid Electric Vehicle Based on Adaptive Dynamic Programming [C]//IEEE International Conference on Industrial Technology. Chengdu, 2008 : 1-6. 被引量:1
  • 4Liu Xudong, Wu Yanping, Duan Jianmin. Optimal Sizing of a Series Hybrid Electric Vehicle Using a Hybrid Genetic Algorithm[C]//2007 IEEE Interna- tional Conference on Automation and Logistics. Ji-nan,2007:1125-1129. 被引量:1
  • 5Montazeri-Gh M, Ahmadi A, Asadi M. Driving Condition Recognition for Genetic-fuzzy HEV Con- trol[C]//3rd International Workshop on Genetic and Evolving Fuzzy Systems. Witten-Bommerholz, 2008:65-70. 被引量:1
  • 6朱元,田光宇,陈全世,夏群生,吴昊.行星齿轮结构的混合动力汽车的系统效率[J].汽车工程,2004,26(3):260-265. 被引量:6
  • 7吴剑,张承慧,崔纳新.基于粒子群优化的并联式混合动力汽车模糊能量管理策略研究[J].控制与决策,2008,23(1):46-50. 被引量:30
  • 8姚雷..混合动力汽车用Ni-MH电池的寿命预测[D].重庆大学,2011:
  • 9Renhart W, Magele C, Schweighofer B. EM-based Thermal Analysis of NiMH Batteries for Hybrid Vehicles[ J ]. IEEE Transactions on Magnetics, 2008, 44(6) :802-805. 被引量:1
  • 10张昕,宋建峰,田毅,张欣.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].机械工程学报,2009,45(2):36-40. 被引量:42

二级参考文献30

  • 1张欣,刘溧,于海生.混合动力电动汽车制动系统回馈特性仿真[J].中国公路学报,2006,19(3):111-116. 被引量:15
  • 2DIAS A H F, DE VASCONCELOS J A. Multiobjective genetic algorithms applied to solve optimization problems[J]. IEEE Transactions on Magnetics, 2002, 38: 1 133-1 136. 被引量:1
  • 3Cruise 3.0 user guide[M]. Austria: AVL List, 2005. 被引量:1
  • 4MORTEZA M G, AMIR P. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J]. Journal of the Franklin Institute, 2006: 420-435. 被引量:1
  • 5FISH S, SAVOIE T B. Simulation-based optimal sizing of hybrid electric vehicle components for specific combat missions[J]. IEEE Transaction on Magnetics, 2001, 37: 485-488. 被引量:1
  • 6WIPKE K, MARKEL T, NELSON D. Optimizing energy management strategy and degree of hybridization for a hydrogen fuel cell SUV[C]//18th Electric Vehicle Symposium, Berlin, Germany, 2001. 被引量:1
  • 7WANG Q, SPRONCK P, TRACHT R. An overview of genetic algorithms applied to control engineering problems[C]// 2003 Inernational Conference on Machine Learning and Cybernetics, 2003:1 651-1 656. 被引量:1
  • 8HASANZADEH A, ASAEI B, EMADI A. Optimum design of series hybrid electric buses by genetic algorithm[C]//IEEE ISLE, Dubrovnik, Croatia, 2005. 被引量:1
  • 9SCHOEGGL P, KRIEGLER W. Virtual optimization of vehicle and powertrain parameters with consideration of human factors[R]. SAE Paper 2005-01-1945. 被引量:1
  • 10Zhu Yuan, Chen Yaobin, et al. Analysis and Design of an Optimal Energy Management and Control System for Hybrid Electric Vehicles. Proc. of EVS19, Bussan, Korea, 2002 被引量:1

共引文献75

同被引文献192

引证文献25

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部