摘要
面对能源和环境的巨大压力,混合动力汽车(hybrid electric vehicle,HEV)已成为汽车工业发展的重要方向。混合动力电动汽车与传统汽车有很大不同,具有独特而又复杂的能量及驱动系统,故对控制系统的要求更高和依赖性更强。该系统可以归结为一类具有高度不确定性和强非线性的混杂切换动态系统,其优化控制策略的优劣直接影响车辆的经济性、可靠性、安全性和舒适性。然而混合动力电动汽车能量及驱动系统的控制器设计却面临众多挑战,现代控制理论和技术则是解决这一技术瓶颈的关键手段。本文从系统与控制科学的角度,深刻全面地综述了HEV能量及驱动系统的能量管理策略、车载动力电池状态估计、驱动系统及其优化控制等关键科学与技术问题及其研究进展,最后指出了HEV能量及驱动系统优化控制技术和理论面临的挑战和发展趋势。
Faced with great pressure in energy and environment,the hybrid electric vehicle(HEV) has become an important development trend of the automobile industry.The HEV is remarkably different from traditional vehicles,and puts more requirements and dependencies on the control system,due to its unique and complicated energy and driving systems.Such a system can be formulated as a class of hybrid switching dynamic system with high uncertainty and strong nonlinearity,and the performance of optimization and control strategy is closely linked with the economy,reliability,safety and the comfort of the HEV.However,there are still many challenges in designing a controller for the energy and driving system of the HEV.Fortunately,modern control theory and technology provide key methods to overcome these technical bottlenecks in energy and driving system of the HEV.From the viewpoint of system and control science,this paper profoundly and comprehensively summarized some key scientific and technical issues and their development,such as the energy management strategy of the HEV energy and driving systems,the state estimation of the HEV traction battery,and the optimal control of the HEV driving system etc.Finally,the challenges and development tendency of the optimal control technologies and theories on the HEV energy and driving systems were also pointed out.
出处
《山东大学学报(工学版)》
CAS
北大核心
2011年第5期1-8,共8页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金资助(61034007
60874016
50977054
71041030
61104034)"混合动力电动汽车能量及驱动系统的优化控制与关键技术研究"和其他面上项目的资助
高等学校博士学科点专项科研基金(200804220047
200804221053)
关键词
混合动力电动汽车
能量及驱动系统
能量管理策略
电池状态估计
hybrid electric vehicle
energy and propulsion system
energy management strategy
battery state estimation