期刊文献+

剩余格上的α-交软滤子 被引量:2

α-intersectional Soft Filters on Residuated Lattices
原文传递
导出
摘要 赋予剩余格作为参数集,提出了剩余格上的α-交软滤子的概念,给出一些刻画和软集交运算下的性质。进一步,剩余格上的α-交软同余关系和α-交软滤子的关系被研究。特别是,当X=α时,证明了SFil(L)(剩余格上交软滤子α-交软滤子的全体)和Scon(L)(剩余格上交软滤子α-交软同余关系的全体)是完备格同构的。最后,得到了剩余格上的α-交软滤子像与原像的性质。 Endowing a residuated lattice as a parameter set, the concepts of a-intersectional soft filters on a residuated lattice are introduced, and some characterization and intersectional operations of α-intersectional soft filters are discussed. Furthurmore, the relationship between a α-intersectional soft filters on a residuated lattice and α-intersectional soft congruence relations on a residuated lattice is given. In particular, it is proved that SFil(L)(the set of all α-intersectional soft filters on a residuated lattice) and Scan(L) (the set of all α-interseetional soft congruence relation on a residuated lattice) are complete lattices isomorphism. Finally, the concepts of image and preimage of a a-intersectional soft filters of residuated lattice and their properties are shown.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第2期39-45,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11071151) 陕西省自然科学基金资助项目(2010JM1005)
关键词 剩余格 α-交软滤子 α-交软同余关系 原像 Residuated Lattice α-intersectional Soft Filter α-intersectional Soft Congruence Relation Image Preimage
  • 相关文献

参考文献14

  • 1Ward M,Dilworth R P.Residuated lattices[J].Trans.Amer.Math.Soc.,1939,45:335-354. 被引量:1
  • 2Háiek P.Mathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998. 被引量:1
  • 3Hoohle U.Commutative residuated monoid[C]//Hohle U,Klement E P.Non-classical logics and their applications to fuzzy subsets.Dordrecht:Kluwer Academic Publishers,1995:53-106. 被引量:1
  • 4Pavelka J.On fuzzy logic Ⅱ:Enriched residuated lattices and semantics of propositional calculi [J].Mathematical Logic Quarterly 1979,25. 被引量:1
  • 5李莉,陈宁.剩余格中同余关系的简化[J].计算机工程与应用,2013,49(16):68-70. 被引量:2
  • 6Molodtsov D.Soft set theory-first results[J].Comput.Math.Appl.,1999,37:19-31. 被引量:1
  • 7Maji P K,Biswas R,Roy A R.Soft set theory[J].Comput.Math.Appl.,2003,45:555-562. 被引量:1
  • 8Yin X,Liao Z H.Study on soft groups[J].Journal of Computers,2013,8:960-967. 被引量:1
  • 9Aktas H,Cagman N.Soft sets and soft groups[J].Inf.Sci.,2007,177:2726-2735. 被引量:1
  • 10Sezgin A,Atagun A O.Soft groups and normalistic soft groups[J].Comput.Math.,2011,62:685-698. 被引量:1

二级参考文献13

  • 1Ward M, Dilworth R.P.Residuated lattices[J].Trans on Amer Math Soc, 1939,45 : 335-354. 被引量:1
  • 2Hohek P.Mathematics of fuzzy logic[M].Dordreeht: Kluwer Aca- demic Publishers, 1998. 被引量:1
  • 3Hohle U.Commutative residuated monoid[C]//Hohle U, Klernent E P.Non-classical Logics and Their Applications to Fuzzy Subsets.Dordrecht: Kluwer Academic Publishers, 1995 : 53-106. 被引量:1
  • 4Johnstone P Y.Stone Spaces[M].Cambridge: Cambridge Uni- versity Press, 1982. 被引量:1
  • 5Chang C C.Algebraic analysis of many valued logics[J].Trans on Amer Math Soc,1958,88:467-490. 被引量:1
  • 6Esteva F, Godo L.Monoidal t-norm based logic:towards a logic for left-continuous t-norms[J].Fuzzy Sets and Systems,2001, 124:271-288. 被引量:1
  • 7Xu Y,Qin K Y.On filters of lattice implication algebras[J]. J Fuzzy Math, 1993,1:251-260. 被引量:1
  • 8Pavelka J.On fuzzy Logic Ⅱ:Enriched residuated lattices and semantics of propositional calculi[J].Mathematical Logic Quarterly 1979,25 : 119-134. 被引量:1
  • 9肖云萍,邹庭荣.泛逻辑学中UB代数系统的滤子与商代数[J].计算机工程与应用,2007,43(35):90-92. 被引量:8
  • 10颉永建,李永明.部分可换半群的子代数与同余关系[J].计算机工程与应用,2009,45(11):5-7. 被引量:3

共引文献1

同被引文献52

  • 1明平华.Fuzzy子格与Fuzzy同态[J].模糊系统与数学,1995,9(1):57-63. 被引量:9
  • 2杨云.格的Fuzy同余理想[J].模糊系统与数学,1997,11(1):24-30. 被引量:8
  • 3Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8 (3) : 338- 353. 被引量:1
  • 4Pawlak Z. Rough sets [J] . International Journal of Parallel Programming, 1982 , 11 (5) : 341- 356. 被引量:1
  • 5Astanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986,20(1) :87--96. 被引量:1
  • 6Molodtsov D, Soft set theory-fir-t results[J]. Computers and Mathematics with Applications, 1999,37 (4) : 19- 31. 被引量:1
  • 7Rosenfeld A. Fuzzy groups[J], Journal of Mathematical Analysis and Applications,1971,3S(3):51Z S17. 被引量:1
  • 8Kuroki N. Fuzzy hi-ideals in semigroupsj l], Comment Mathematical University St Paul,1980,80(1):17-21. 被引量:1
  • 9Kuroki N. On fuzzy ideals and fuzzy hi-ideals in semigroups[J]. Fuzzy Sets and Systems,1981,5(2) :203-215. 被引量:1
  • 10Kuroki N. On fuzzy semigroups[J]. Information Sciences, 1991,53 (3) : 203- 236. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部