期刊文献+

基于PCA-RBF网络的储运过程管道堵塞故障诊断方法 被引量:1

Fault Diagnosis Method of Storage and Transportation Process Blockage in Pipelines Based on PCA and RBF Network
下载PDF
导出
摘要 针对现代储运过程管道堵塞故障诊断时,提取的过程参数多导致诊断速度慢、性能差等问题,提出了基于主成分分析(PCA)和径向基函数(RBF)神经网络故障的诊断方法。首先利用PCA方法对储运过程高维历史数据矩阵进行特征提取,提取的故障特征信息作为训练集,并给出故障特征信息的分类号;然后将其作为RBF神经网络分类器的输入输出进行故障模式识别。仿真实验表明:该方法应用于储运过程管道堵塞故障诊断,不仅大幅度地降低了诊断模型的训练时间,而且提高了诊断正确率。 Many process parameters are selected to diagnose modern storage and transportation process blockage in pipelines, which makes diagnosis slow and its performance poor. To address it, a fault diagnosis method based on principal component analysis(PCA)and radical basis function(RBF)network was proposed. Firstly, PCA method was used to extract the feature of high historical data, as the training set. And the classification of the fault characteristic information was given and then the input and output of RBF network classifiers were taken to identify the failure mode. The simulation results show that the method in pipeline of transportation jam fault diagnosis not only greatly reduces the diagnostic model training time but also improves the diagnostic accuracy.
出处 《后勤工程学院学报》 2014年第3期91-96,共6页 Journal of Logistical Engineering University
关键词 主成分分析 RBF神经网络 管道堵塞 故障诊断 PCA RBF network pipeline blockage fault diagnosis
  • 相关文献

参考文献15

  • 1孙二国,王岳,张治国,吴琦,赵庆福.输油管道堵塞水力瞬变模拟分析[J].石油化工高等学校学报,2011,24(1):82-85. 被引量:2
  • 2刘恩斌,李长俊,刘晓东,彭善碧.油气管道堵塞检测及定位技术研究[J].哈尔滨工业大学学报,2009,41(1):204-206. 被引量:9
  • 3税爱社,陈伟民,方卫红,刘丽川,张世富.基于分压补偿的传感电缆泄漏检测精确定位方法[J].仪器仪表学报,2013,34(2):332-337. 被引量:16
  • 4周东华,李钢,李元.数据驱动的工业过程故障诊断技术:基于主元分析与偏最小二乘的方法[M].北京:科学出版社,2011:1-14. 被引量:3
  • 5李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9. 被引量:259
  • 6Venkatasubramanian V,Rengaswamy R,Yin Ke-wen,et al.A review of process fault detection and diagnosis:Part I:Quantitative model-based methods[J].Computers&Chemical Engineering,2003,27(3):293-311. 被引量:1
  • 7Venkatasubramanian V,Rengaswamy R,Kavuri S N,et al.A review of process fault detection and diagnosis:PartⅢ:Process history based methods[J].Computers&Chemical Engineering,2003,27(3):327-346. 被引量:1
  • 8Rajakarunakaran S,Venkat P,Devaraj D,et al.Artificial neural network approach for fault detection in LPG transfer system[J].Applied Soft Computing,2008,8(1):740-748. 被引量:1
  • 9Zhang J.Improved on-line process fault diagnosis through information fusion in multiple neural network[J].Computers and Chemical Engineering,2006,30(3):558-571. 被引量:1
  • 10Quteishat A,Lim C P.A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification[J].Applied Soft Computing,2008,8(2):985-995. 被引量:1

二级参考文献108

共引文献366

同被引文献14

  • 1李云飞,黄彦全,蒋功连.基于PCA-SVM的电力系统短期负荷预测[J].电力系统及其自动化学报,2007,19(5):66-70. 被引量:20
  • 2Venkatasubramanian V,Rengaswamy R,Kavuri S N. A review of process fault detection and diagnosis PartⅡ:Qualitative models and searchstrategies[J]. Computers and Chemical Engineering,2003,27(3):313-326. 被引量:1
  • 3Venkatasubramanian V,Rengaswamy R,Kavuri S N. A review of process fault detection and diagnosis Part Ⅲ:Process history based methods[J].Computers and Chemical Engineering,2003,27(3):327-346. 被引量:1
  • 4Han H,Cao Z,Ren B G N. PCA.SVM.based automated fault detection and diagnosis(AFDD)for vapor.compression refrigeration systems[J].Hvac & R Research,2010,16(3):295-313. 被引量:1
  • 5Wang Z,Zhang S N,Kuang J C. A PCA.SVM model for reservoir identification[J]. Computing Techniques for Geophysical & Geochemical Explo.ration,2010,32(6):636-535. 被引量:1
  • 6Cristianini N,Shawe.Taylor J. An introduction to support vector machines and other kernel.based leaning methods[M]. Cambridge,UK:Cam.bridge University Press,2000:93-112. 被引量:1
  • 7Kecman V. Learning and soft computing:Support vector machines,neural networks and fuzzy logic models[M]. Cambridge,UK:The MIT Press,2001:148-176. 被引量:1
  • 8Collobert R,Bengio S. SVMTorch:A support vector machine for large.scale regression and classification problems[J]. Journal of Machine Learn.ing Research,2001,1(2):143-160. 被引量:1
  • 9Krebel U. Pairwise classification and support vector machines.advances in kernel methods[M]. Cambridge,UK:The MIT Press,1999:255-268. 被引量:1
  • 10张贝克,张海洋,马昕.定性趋势分析在过程故障诊断中的应用研究[J].系统仿真学报,2008,20(10):2750-2753. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部