期刊文献+

改进的压缩感知重构算法及其在图像融合中的应用 被引量:4

Improved compressed sensing reconstruction algorithm and its application in image fusion
下载PDF
导出
摘要 为了提升压缩感知图像的重构精度,该文提出一种伪逆自适应压缩感知重构算法。该算法在总结已有贪婪算法的基础上,从最优原子的选择方式和支撑集更新过程两方面对已有算法进行改进。将算法应用于基于压缩感知原理的图像融合框架,实验结果表明,改进算法的重构图像质量优于基本贪婪类算法,应用于图像融合时可在较短的时间内得到更好的融合结果。 In order to reconstruct images more accurate in compressed sensing,the pseudo-inverse adaptive matching pursuit( PIAMP) reconstruction algorithm is put forward based on the existing greed algorithms. The algorithm modifies the existing algorithm from the selection method and support set updating process of the optimal atom. The algorithm is applied in the image fusion of the compressed sensing. The experimental results show that,the reconstruction effect resulting from PIAMP is better than that of other basic greed algorithms,and a good fusion result can be obtained in shorter time.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第2期259-263,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60802084) 西北工业大学基础研究基金(JC20110266)
关键词 压缩感知 伪逆自适应算法 贪婪算法 图像融合 compressed sensing pseudo-inverse adaptive matching pursuit algorithm greedy algorithm image fusion
  • 相关文献

参考文献13

  • 1Candes E J, Wakin M B. An introduction to compressive sampling[ J ]. IEEE Signal Processing Magazine, 2008,25 (2) :21-30. 被引量:1
  • 2Li Xin, Qin Shiyin. Efficient fusion for infrared and visible images based on compressive sensing principle [ J ]. lET Image Processing,2011,5 (2) : 141 - 147. 被引量:1
  • 3Tao Wan, Canagarajah N, Achim A. Compressive imagefusion[ A]. Preceedings of IEEE Conference on Image Processing[ C ]. San Diego, CA: IEEE ,2008 :1308-1311. 被引量:1
  • 4贺亚鹏,朱晓华,庄珊娜,王克让.压缩感知雷达波形优化设计[J].南京理工大学学报,2011,35(4):519-524. 被引量:5
  • 5Tropp J A, Gilbea A C. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2007, 53 (12) :4655-4666. 被引量:1
  • 6Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[ J ]. Foundations of Computational Mathematics, 21309,9(3) :317-334. 被引量:1
  • 7Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis, 2008, 26(3) :301-321. 被引量:1
  • 8Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [ A ]. Proceedings of the 42th Asilomar Conference on Signals, Systems, and Computers [ C ]. Pacific Grove, US: IEEE Signals Processing Society, 2008 : 581-587. 被引量:1
  • 9刘亚新,赵瑞珍,胡绍海,姜春晖.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717. 被引量:70
  • 10Lu Gan. Block compressed sensing of natural images [ A ]. Proceedings of the International Conference on Digital Signal Processing [ C ]. Cardiff, UK: Digital Signal Processing,2007:403-406. 被引量:1

二级参考文献18

  • 1Cand-s E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory,2006,52(2) :489-509. 被引量:1
  • 2Cand-s E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006,59 ( 8 ) : 1207-1223. 被引量:1
  • 3Candbs E J. Compressive sampling[ A]. Proceedings of ICM2006 [ C ]. Madrid, Spain : Association International Congress of Mathematicians, 2006 : 1433-1452. 被引量:1
  • 4Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52 (4) : 1289 -1306. 被引量:1
  • 5Baraniuk R, Steeghs P. Compressive radar imaging[ A ]. Proceedings of IEEE International Radar Conference [ C ]. Boston, USA : IEEE Press, 2007 : 128-133. 被引量:1
  • 6Herman M A, Strohmer T. High-resolution radar via compressed sensing [ J ]. IEEE Transactions on Signal Processing, 2009,57 ( 6 ) : 2275-2284. 被引量:1
  • 7Shi G M, Chen X Y, Qi F, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing [ J ]. IEEE Transactions on Circuits and Systems II : Express Briefs, 2008,55 (4) : 379 -383. 被引量:1
  • 8Tello A M, Lopez-Dekker F, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2010,48 (9) : 1 - 11. 被引量:1
  • 9Subotic N S, Thelen B, Cooper K, et al. Distributed radar waveform design based on compressive sensing considerations [ A ]. Proceedings of IEEE International Radar Conference[ C ]. Rome, Italy : IEEE Press,2008 : 1-6. 被引量:1
  • 10Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [ J ]. IEEE Transactions on Information Theory, 2006,52(1) :6-18. 被引量:1

共引文献112

同被引文献26

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部