期刊文献+

压缩感知原理在盲信号分离中的应用 被引量:2

The Application of Compressed Sensing in Blind Source Separation
下载PDF
导出
摘要 主要阐述了压缩感知的基本原理,介绍了压缩感知的3个基本问题:信号的稀疏表示、稀疏基与测量矩阵的不相关性和信号的重构,分析了它与盲信号分离之间的联系,为解决盲信号分离问题提供了一个新的途径.最后通过具体实验说明它在盲信号分离上的应用. Compressed Sensing has been a new signal sampling theory in recent years, for it overcomes the high rate of sampling defects of traditional Nyquist signal sampling theory, It presented the basic principles of Compressed Sensing, introduced three fundamental questions of Compressed Sensing-the sparseness of signals ,irrelevance between sparse matrix and measurement matrix, and reconstruction of the signals, and analyzed the contact between Compressed Sensing and Blind Source Separation. Then, it offered a new way to solve the problem of Blind Source Separation. Finally, through the experiment it showed its application in Blind Source Separation.
作者 王涛文
出处 《广东工业大学学报》 CAS 2012年第3期49-53,共5页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(60974077) 广东省自然科学基金资助项目(10251009001000002)
关键词 压缩感知 稀疏 不相关 信号分离 compressed sensing sparse irrelevance signal separation
  • 相关文献

参考文献10

  • 1Romberg J. Imaging via compressive sampling [ J ]. IEEE Signal Processing Magazine,2008,25 ( 2 ) : 14-20. 被引量:1
  • 2Baraniuk R G. Compressive sensing[ J ]- IEEE Signal Pro- cessing Magazine,2007,24(4) :118-121. 被引量:1
  • 3Donoho D L. Compressed sensing[J]. IEEE Transaction on Information Theory, 2006, 52(4) :1289-1306. 被引量:1
  • 4Candbs E J,Tao T. Near optimal signal recovery from ran- dom projections: universal encoding strategies? [ J]. IEEETrans. on Information Theory, 2006,52 ( 12 ) : 5406-5425. 被引量:1
  • 5Cands E J. The restricted isometry property and its impli- cations for compressed sensing[ J ]. Acadmie des sciences, 2006, 346(I) : 598-592. 被引量:1
  • 6Cands E, Romberg J. Sparsity and incoherence in com- pressive sampling [ J ]. Inverse Problems, 2007,23 ( 3 ) : 969-985. 被引量:1
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 8Mallat S G, Zhifeng Z. Matching pursuits with time-frequen- cy dictionaries [ J ]. IEEE Transaction on Signal Process- ing,1993, 41 (12) :3397-3415. 被引量:1
  • 9Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise [ J]. IEEE Transaction on Information Theory, 2006, 52 (1) :6-18. 被引量:1
  • 10Trzasko J, Manduca. A highly undersampled magnetic resonance image reconstruction via homotopic ell-() mini- mization [ J ]. IEEE Transactions on Medical Imaging, 2009,28( 1 ) : 106-121. 被引量:1

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献708

同被引文献34

  • 1孙子璇,易荣华.基于小波变换的正交匹配追踪算法及其应用[J].计算机科学,2012,39(S3):273-275. 被引量:5
  • 2谢秀娴,付攀,曹伟青.声发射和小波包分解技术在刀具磨损状态中的应用[J].中国测试技术,2006,32(2):40-42. 被引量:13
  • 3张茹,谢和平,刘建锋,邓建辉,彭琦.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588. 被引量:187
  • 4Cheng X F,Zhang Z,Wang L F,et al.The application research of underdetermined blind source separation method in the extraction of heart sounds signal[J].Advanced Science Letters,2013,19(7):1841-1845. 被引量:1
  • 5Li Y,Andrze J C,Amari S.Analysis of sparse representation and blind source separation[J].Neural Computation,2004,16(6):1193-1234. 被引量:1
  • 6Xu T,Wang W W,Dai W.Sparse coding with adaptive dictionary learning for underdetermined blind speech separation[J].Speech Communication,2013,55 (3):432-450. 被引量:1
  • 7Yilmaz O,Rickard S.Blind separation of speech mixtures via time-frequency masking[J].IEEE Trans on Signal Processing,2004,52 (7):1830-1847. 被引量:1
  • 8Pertil(a)P,Online blind speech separation using multiple acoustic speaker tracking and time-frequency masking[J].Computer Speech & Language,2013,27 (3):683-702. 被引量:1
  • 9Yu X C,Xu J D,Hu D.A new blind image source separation algorithm based on feedback sparse component analysis[J].Signal Processing,2013,93(1):288-296. 被引量:1
  • 10DamH H,Rimantho D,Nordholm S.Second-order blind signal separation with optimal step size[J].Speech Communication,2013,55 (4):535-543. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部