期刊文献+

基于小波去噪结合CVA-ICA的故障检测方法的研究 被引量:13

Fault Detection Based on Wavelet De-noise and CVA-ICA
下载PDF
导出
摘要 针对工业过程的故障诊断问题,文中提出了一种基于小波去噪结合规范变量分析与独立元分析(CVA-ICA)的故障检测方法。该方法首先利用小波变换对过程数据去噪,然后用CVA方法求出观测数据的规范变量,并且对规范变量进行ICA分解,最后运用和统计量判断工况是否正常。通过对Tennessee Eastman(TE)过程的仿真研究,验证了该方法的可行性与有效性。 In order to handle the problem of fault diagnosis for industrial processes, an improved fault detection method was proposed based on wavelet de-noise integrated with canonical variable analysis (CVA)and independent component analysis (ICA). The wavelet transform was used for de-noising,and the CVA algorithm wass used to calculate the canonical variable of the data, and then, the ICA algorithm was used to decompose the canonical variable. The fault detection was performed by means of Ho- tellingand. A case study of Tennessee Eastman (TE) process shows that the proposed algorithm is feasible and efficient.
出处 《仪表技术与传感器》 CSCD 北大核心 2014年第4期80-84,共5页 Instrument Technique and Sensor
关键词 小波去噪 规范变量分析 独立元分析 故障检测 wavelet de-noise canonical variable analysis independent component analysis fault detection
  • 相关文献

参考文献17

  • 1李元,谢植,王纲.基于故障重构的PCA模型主元数的确定[J].东北大学学报(自然科学版),2004,25(1):20-23. 被引量:11
  • 2CUI P L,LI J H,WANG G Z.Improved kernel principal component analysis for fault detection.Expert Systems with Applications,2008,34(2):1210-1219. 被引量:1
  • 3LEE J M,YOO C K,LEE I B.Statistical process monitoring with independent component analysis.Journal of Process Control,2004,14(5):467-485. 被引量:1
  • 4LEE J M,YOO C K,LEE I B.Statistical monitoring of dynamic processes based on dynamic independent component analysis.Chemical Engineering Science,2004,59 (14):2995-3006. 被引量:1
  • 5CHIANG L H,RUSSELl E L,B RAATZ R D.Fault detection and diagnosis in industrial systems.London:Springer-Verlag,2001. 被引量:1
  • 6赵旭..基于统计学方法的过程监控与质量控制研究[D].上海交通大学,2006:
  • 7DONOHO D L,JOHNSTONE I.Wavelet shrinkage asymptopia.Journal of Royal Statistical Society,1995,57 (2):301-369. 被引量:1
  • 8NOUNOU M N,BHAVIK R.Bakshi.On-line multiscale filtering of random and gross errors without process models.AIChE,1995,45 (5):1041-1058. 被引量:1
  • 9胡友强,柴毅,李鹏华.在线多尺度滤波多变量统计过程的适时监测[J].重庆大学学报(自然科学版),2010,33(6):128-133. 被引量:2
  • 10LEE C,CHOI S W,LEE I B.Variable reconstruction and sensor fault identification using canonical variate analysis.Process Control,2006,16(7):747-761. 被引量:1

二级参考文献28

  • 1耿卫国,徐涛,王祁.基于MSPCA的液体火箭发动机试车台氢供应系统传感器故障诊断方法[J].宇航学报,2006,27(6):1142-1146. 被引量:8
  • 2BAKSHI B R. Multiscale PCA with application to multivariate statislical process monitoring [J]. American Institute of Chemical Engineering Journal, 1998, 44(7): 1596 -1610. 被引量:1
  • 3REIS M S, SARAIVA P M. Multiscale statistical process control using wavelet packets [J]. AICHE Journal, 2008,54(9) :2366 -2378. 被引量:1
  • 4XU T. Sensor fault diagnosis and data reconstruction based on MSPCA[C]//Proceedings of the 27th Chinese Control Conference, July 16 18, 2008, Kunming, China. [S. l]. IEEE, 2008:30-33. 被引量:1
  • 5GAO Q, HAN M, HU S L, et al. Design of fault diagnosis system of FPSO production process based on MSPCA[C]// 25th International Conference on Information Assurance and Security, IAS 2009, August 18 20, 2009, Xi'an, China. [S. l]. IEEE, 2009: 729-732. 被引量:1
  • 6REISM S, SARAIVA P M. Multiscale statistical process control with multiresolution data[J]. AICHE Journal,2006,52(6) : 2107-2119. 被引量:1
  • 7REISM S, SARAIVA P M. Generalized multiresolution decompsition framework for the analysis of industrial data with uncertainly and missing values[J]. Industrial and Engineering Chemistry Research, 2006, 45(18): 6330- 6338. 被引量:1
  • 8CHEN W Y. Application of multi-scale principal component analysis and SVM to the motor fault diagnosis[C] // International Forum on Information Technology and Applications, May 15 17, 2009, Chengdu, China. [S. l]: IEEE, 2009:131 134. 被引量:1
  • 9ZHANG G Y ZHANG J. Face recognition using multiscale PCA and support vector machine[C] // Proceedings of the World Congress on Intelligent Control and Automation (WCICA), June 25-27, 2008, Chongqing, China. [S. l]: IEEE, 2008:5906-5910. 被引量:1
  • 10NOUNOU M N, BAKSHI B R. On line muhisc-cale filtering of random and gross errors without process models[J]. AICHE Journal, 1999, 45(5): 1041-1058. 被引量:1

共引文献11

同被引文献92

引证文献13

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部