期刊文献+

基于EEMD的车辆微动信号提取及分类 被引量:2

EEMD-based vehicle micro-motion echo signal extraction and classification
下载PDF
导出
摘要 针对轮式和履带式车辆微动信号的差异对目标车辆进行了识别分类,利用集合经验模式分解(EEMD)将原始信号分解为多个本征模函数(IMF),通过相关性分析,验证了EEMD能够有效克服EMD所带来的模态混叠问题。在此基础上,提取了4种特征,采用最近邻方法进行分类。实验结果表明:经EEMD所提取的特征是有效的,对目标速度,以及方位角的变化具有相当的稳健性。 Aiming at difference of micro-motion echo signal of two kinds of vehicles,target vehicle is identified and classified. Ensemble empirical mode decomposition(EEMD) is employed to decompose original signal into a number of intrinsic mode function(IMF). By means of correlation analysis,it is proved that EEMD can effectively overcome the mode mixing problem caused by EMD. On this basis,four features are extracted,the nearest neighbor method is used for classification. Experimental results show that the features extracted after EEMD are effective and fairly robust against the variation of the target velocity and azimuth angle.
作者 林萍 陈华杰 林封笑 LIN Ping CHEN Hua-jie LIN Feng-xiao(Key Laboratory of Fundamental Science for National Defense-Communication Information Transmission and Fusion Technology, Hangzhou Dianzi University, Hangzhou 310018, China)
出处 《传感器与微系统》 CSCD 2017年第10期38-40,44,共4页 Transducer and Microsystem Technologies
基金 国家"十二五"预研项目
关键词 集合经验模态分解 微多普勒 目标分类 信号分离 micro-Doppler target classification signal sepa-ration
  • 相关文献

参考文献6

二级参考文献63

共引文献36

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部