期刊文献+

P2P环境下基于社会化标签的个性化推荐模型研究 被引量:3

Model for Personalized Recommendation Based on Social Tagging in P2P Environment
原文传递
导出
摘要 【目的】利用用户使用标签的频率和时间因素计算用户的标签偏好向量,讨论用户兴趣的动态变化性对个性化推荐准确性的影响。【方法】构建P2P环境下基于社会化标签的个性化推荐模型,详细说明用户偏好的计算过程及推荐流程,并以西安某高校的P2P电影分享系统为对象进行实验验证。【结果】在随机选择的10名目标用户中,对其中8名用户的推荐命中率均高于传统基于用户评分的协同过滤推荐,说明综合用户标签使用频率和时间因素的推荐效果的优越性。【局限】由于本文主要研究用户兴趣的动态性对个性化推荐的影响,因此只在实验时人工删除无意义标签、合并相似标签,并没有引入有效的控制标签模糊性机制。【结论】在个性化推荐中,考虑用户兴趣的动态变化性,有助于提高推荐结果的准确性。 [Objective] Utilizing tags frequency and time used by the user, discussing the impact of dynamic changes of user interest for personalized recmmendation accuracy. [Methods] Constructing model for personalized recom- mendation based on social tagging in P2P environment, illustrating the calculation of user preferences and recommended process in detail. Making an experiment to verify the validity of the model using P2P movie sharing system. [Results] In 10 randomly selected target users, the hit rate of recommendation for eight users is higher than traditonal collabrative filtering which is based on scores, proving the advantages of making full use of tag frequency and time factor to recommend. [Limitations] Due to the main task of this paper is to reseach the impact of dynamic changes of user interst for personalized recommendation, so only delete meaningless tags and merge similar tags by hands, do not have an effective mechanism to control the ambiguity of tags. [Conclusions] Considering the dynamic changes of user interest can help to improve the accuracy of personalized recommendation.
作者 赵艳 王亚民
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第5期50-57,共8页 New Technology of Library and Information Service
关键词 社会化标签 个性化推荐 标签偏好向量 P2P Social tagging Personalized recommendation Tag preference vector P2P
  • 相关文献

参考文献18

  • 1韩定一..对等网络的社区模型及其在搜索中的应用[D].上海交通大学,2007:
  • 2魏建良,朱庆华.社会化标注理论研究综述[J].中国图书馆学报,2009,35(6):88-96. 被引量:46
  • 3陈洁,司莉.社会分类法(Folksonomy)特点及其应用研究[J].图书与情报,2008(3):27-30. 被引量:17
  • 4徐志玮,郑建瑜.社会化标签特性及研究进展综述[J].图书馆建设,2013(5):88-91. 被引量:4
  • 5G6rlitz O, Sizov S, Staab S.PINTS: Peer-to-peer Infras- tructure for Tagging SystemiC]. In: Proceedings of the 7th International Conference on Peer-to-Peer Systems (IPTPS). Berkeley, CA, USA: USENIX Association, 2008. 被引量:1
  • 6Fokker J, Pouwelse J, Buntine W. Tag-Based Navigation for Peer-to-Peer Wikipedia[OL].[2013 - 10-20].http://bioinformatics. tudelft.nl/sites/de fault/files/final_p2pwikipedia.pdf. 被引量:1
  • 7Dattolo A, Ferrara F, Tasso C. Neighbor Selection and Recommendations in Social Bookmarking Tools [C]. In: Proceedings of the 9th International Conference on Intelligent Systems Design and Applications. 2009: 267-272. 被引量:1
  • 8Chen H, Dumais S.Bringing Order to the Web: Automatically Categorizing Search Results[C]. In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2000: 145-152. 被引量:1
  • 9Shiratsuchi K, Yoshii S, Furukawa M. Finding Unknown Interests Utilizing the Wisdom of Crowds in a Social Bookmark Service[C]. In: Proceedings of the 2006 IEEE/ WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Washington DC: IEEE Computer Society, 2006:421-424. 被引量:1
  • 10易明,邓卫华,徐佳.社会化标签系统中基于组合策略的个性化知识推荐研究[J].情报科学,2011,29(7):1093-1097. 被引量:18

二级参考文献207

共引文献119

同被引文献26

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部